Qiaozhi Lu
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qiaozhi Lu.
Scientific Reports | 2016
Ok Hee Jeon; Leelamma M. Panicker; Qiaozhi Lu; J. Jeremy Chae; Ricardo A. Feldman; Jennifer H. Elisseeff
Bone substitutes can be designed to replicate physiological structure and function by creating a microenvironment that supports crosstalk between bone and immune cells found in the native tissue, specifically osteoblasts and osteoclasts. Human induced pluripotent stem cells (hiPSC) represent a powerful tool for bone regeneration because they are a source of patient-specific cells that can differentiate into all specialized cell types residing in bone. We show that osteoblasts and osteoclasts can be differentiated from hiPSC-mesenchymal stem cells and macrophages when co-cultured on hydroxyapatite-coated poly(lactic-co-glycolic acid)/poly(L-lactic acid) (HA–PLGA/PLLA) scaffolds. Both cell types seeded on the PLGA/PLLA especially with 5% w/v HA recapitulated the tissue remodeling process of human bone via coupling signals coordinating osteoblast and osteoclast activity and finely tuned expression of inflammatory molecules, resulting in accelerated in vitro bone formation. Following subcutaneous implantation in rodents, co-cultured hiPSC-MSC/-macrophage on such scaffolds showed mature bone-like tissue formation. These findings suggest the importance of coupling matrix remodeling through osteoblastic matrix deposition and osteoclastic tissue resorption and immunomodulation for tissue development.
Journal of Orthopaedic Research | 2013
Jacob A. Simson; Joshua Crist; Iossif Strehin; Qiaozhi Lu; Jennifer H. Elisseeff
Tissue adhesives can bind together damaged tissues and serve as tools to deliver and localize therapeutics to facilitate regeneration. One emerging therapeutic trend in orthopedics is the use of intraoperative biologics (IOB), such as bone marrow (BM) and platelet‐rich plasma (PRP), to stimulate healing. Here, we introduce the application of the biomaterial chondroitin sulfate succinimidyl succinate (CS‐NHS) to deliver IOB in a hydrogel adhesive. We demonstrate the biomaterials ability to bind various tissue types and its cellular biocompatibility with encapsulated human mesenchymal stem cells (hMSCs). Further, we examine in detail the CS‐NHS adhesive combined with BM aspirate for use in bone applications. hMSCs were encapsulated in CS‐BM and cultured for 5 weeks in osteogenic medium. Quantitative RT‐PCR demonstrated osteogenesis via upregulation of the osteogenic transcription factor Runx2 and bone markers alkaline phosphatase and osteocalcin. Significant deposition of calcium and osteocalcin was detected using biochemical, histological, and immunohistochemical techniques. Shear testing demonstrated that the CS‐BM adhesive exhibited an adhesive strength approximately an order of magnitude stronger than fibrin glue and approaching that of a cyanoacrylate adhesive. These results indicate that CS‐NHS is a promising delivery tool for IOB in orthopedic applications requiring a strong, degradable, and biocompatible adhesive that supports bone growth.
Biomacromolecules | 2013
Jacob A. Simson; Iossif Strehin; Qiaozhi Lu; Manuel O. Uy; Jennifer H. Elisseeff
A chondroitin sulfate-bone marrow (CS-BM) adhesive hydrogel was used to localize rhBMP-2 to enhance articular cartilage tissue formation. Chondrocyte pellet culture revealed that 0.1 and 1 μg/mL of rhBMP-2 enhanced sulfated-GAG content. rhBMP-2 localization within the hydrogels was investigated, and it was found that BM, CS-NHS, and rhBMP-2 levels and time affected rhBMP-2 retention. Retention was modulated from 82 to 99% over a 3-week period for the material formulations investigated. To evaluate carrier efficacy, rhBMP-2 and bovine articular chondrocytes were encapsulated within CS-BM, and biochemical evaluation revealed significant increases in total collagen production with rhBMP-2. Histological analysis revealed more robust tissue formation and greater type-II collagen production with encapsulated rhBMP-2. Subsequently, a subcutaneous culture of hydrogels revealed increased total collagen, type-II to type-I collagen ratio, and sulfated GAG in samples carrying rhBMP-2. These findings indicate the development of a multifunctional system capable of localizing rhBMP-2 to enhance repair tissue quality.
Military Medicine | 2014
Jemin Jeremy Chae; Daniel G. Mulreany; Qiongyu Guo; Qiaozhi Lu; Joseph S. Choi; Iossif Strehin; Freddy A. Espinoza; Oliver D. Schein; Morgana M. Trexler; Kraig S. Bower; Jennifer H. Elisseeff
This study was performed to evaluate the potential of a chondroitin sulfate-polyethylene glycol (CS-PEG) adhesive and collagen-based membrane (collagen vitrigel, CV) combination as a method to treat penetrating ocular injuries on the battlefield and to improve this method with two technologies: an antibiotic releasing CS-PEG adhesive and a corneal shaped CV. Burst testing using porcine cadaveric eyes, high-performance liquid chromatography, the Kirby-Bauer bacterial inhibition test, and CV implantations on the live and cadaveric rabbit eyes were performed. The ocular burst test showed CS-PEG adhesive could successfully repair 5-mm to 6-mm length wounds in the corneal and corneoscleral regions but would require CS-PEG + CV to treat larger wounds similar to those seen on the battlefield. In addition, high performance liquid chromatography and the Kirby-Bauer bacterial inhibition test presented evidence suggesting the vancomycin incorporated CS-PEG could inhibit Staphylococcus infection for 9 days. Furthermore, the curved CV showed an advantage by matching the corneal contour without any wrinkle formation. Although this pilot study showed a limited range of possible applications, we demonstrated that the combination of CS-PEG adhesive + CV is a promising method and the 2 technologies improve their applicability to the special demands of the battlefield.
Middle East African Journal of Ophthalmology | 2013
Jennifer H. Elisseeff; Marcos G Madrid; Qiaozhi Lu; J. Jeremy Chae; Qiongyu Guo
Repair and reconstruction of the cornea has historically relied on synthetic materials or tissue transplantation. However, the future holds promise for treatments using smart biomaterials and stem cells that direct tissue repair and regeneration to ultimately create new ocular structures that are indistinguishable from the original native tissue. The cornea is a remarkable engineering structure. By understanding the physical structure of the tissue and the resulting impact of the structure on biological function, we can design novel materials for a number of ophthalmic clinical applications. Furthermore, by extending this structure-function approach to characterizing corneal disease processes, new therapies can be engineered.
Journal of Tissue Engineering and Regenerative Medicine | 2015
Qiaozhi Lu; Yuanfan Zhang; Jennifer H. Elisseeff
Cellular metabolic activity, especially mitochondrial metabolism, plays a vital role in regulating cell proliferation and differentiation. Metabolism could therefore be an important factor to consider when using engineering technologies to stimulate tissue development and repair. The small metabolite carnitine and its derivative acetylcarnitine affect the activities of several pathways in mitochondrial metabolism, but their influence on cell differentiation has not yet been thoroughly studied. To elucidate the effects of these two small molecules on mesenchymal tissue engineering, we used adult stem cells as a platform in both monolayer and 3D hydrogel culture systems. We investigated the impact of these two small molecules on the differentiation of adult stem cells and analysed gene expression, cell proliferation and extracellular matrix deposition. We found that the molecules reduced adipogenesis but stimulated osteogenesis and chondrogenesis in both culture systems. Our results suggest that carnitine and acetylcarnitine could affect the differentiation rate of adult stem cells by regulating mitochondrial metabolism. The effects of these two small molecules give rise to the possibility of employing such metabolites in tissue‐engineering systems to enhance cell differentiation and tissue development. Copyright
Acta Biomaterialia | 2017
David S. Lee; Qiaozhi Lu; Sven D. Sommerfeld; Amanda Chan; Nikhil G. Menon; Tannin A. Schmidt; Jennifer H. Elisseeff; Anirudha Singh
Hyaluronic acid (HA) solutions effectively lubricate the ocular surface and are used for the relief of dry eye related symptoms. However, HA undergoes rapid clearance due to limited adhesion, which necessitates frequent instillation. Conversely, highly viscous artificial tear formulations with HA blur vision and interfere with blinking. Here, we developed an HA-eye drop formulation that selectively binds and retains HA for extended periods of time on the ocular surface. We synthesized a heterobifunctional polymer-peptide system with one end binding HA while the other end binding either sialic acid-containing glycosylated transmembrane molecules on the ocular surface epithelium, or type I collagen molecule within the tissue matrix. HA solution was mixed with the polymer-peptide system and tested on both ex vivo and in vivo models to determine its ability to prolong HA retention. Furthermore, rabbit ocular surface tissues treated with binding peptides and HA solutions demonstrated superior lubrication with reduced kinetic friction coefficients compared to tissues treated with conventional HA solution. The results suggest that binding peptide-based solution can keep the ocular surface enriched with HA for prolonged times as well as keep it lubricated. Therefore, this system can be further developed into a more effective treatment for dry eye patients than a standard HA eye drop. STATEMENT OF SIGNIFICANCE Eye drop formulations containing HA are widely used to lubricate the ocular surface and relieve dry eye related symptoms, however its low residence time remains a challenge. We designed a polymer-peptide system for the targeted delivery of HA to the ocular surface using sialic acid or type I collagen as anchors for HA immobilization. The addition of the polymer-peptide system to HA eye drop exhibited a reduced friction coefficient, and it can keep the ocular surface enriched with HA for prolonged time. This system can be further developed into a more effective treatment for dry eye than a standard HA eye drop.
Investigative Ophthalmology & Visual Science | 2017
Qianli Meng; Yaowu Qin; Monika Deshpande; Fabiana Kashiwabuchi; Murilo Rodrigues; Qiaozhi Lu; Hui Ren; Jennifer H. Elisseeff; Gregg L. Semenza; Silvia Montaner; Akrit Sodhi
Purpose Disappointing results from clinical studies assessing the efficacy of therapies targeting vascular endothelial growth factor (VEGF) for the treatment of pterygia suggest that other angiogenic mediators may also play a role in its development. We therefore explore the relative contribution of VEGF, hypoxia-inducible factor (HIF)-1α (the transcription factor that regulates VEGF expression in ocular neovascular disease), and a second HIF-regulated mediator, angiopoietin-like 4 (ANGPTL4), to the angiogenic phenotype of pterygia. Methods Expression of HIF-1α, VEGF, and ANGPTL4 were examined in surgically excised pterygia, and in immortalized human (ih) and primary rabbit (pr) conjunctival epithelial cells (CjECs). Endothelial cell (EC) tubule formation assays using media conditioned by ihCjECs in the presence or absence of inducers/inhibitors of HIF-1 or RNA interference (RNAi) targeting VEGF, ANGPTL4, or both were used to assess their relative contribution to the angiogenic potential of these cells. Results HIF-1α and VEGF expression were detected in 6/6 surgically excised pterygia and localized to CjECs. Accumulation of HIF-1α in was confirmed in ihCjECs and prCjECs, including stratified prCjECs grown on collagen vitrigel, and resulted in expression of VEGF and the promotion of EC tubule formation; the latter effect was partially blocked using RNAi targeting VEGF mRNA expression. We demonstrate expression of a second HIF-regulated angiogenic mediator, ANGPTL4, in CjECs in culture and in surgically excised pterygia. RNAi targeting ANGPTL4 inhibited EC tubule formation and was additive to RNAi targeting VEGF. Conclusions Our results support the development of therapies targeting both ANGPTL4 and VEGF for the treatment of patients with pterygia.
Cornea | 2015
J. Jeremy Chae; Joseph S. Choi; Justin Lee; Qiaozhi Lu; Walter J. Stark; Irene C. Kuo; Jennifer H. Elisseeff
Purpose: To compare the physical and biological characteristics of commercial gamma-irradiated corneas with those of fresh human corneas and to determine suitability for transplantation. Methods: The physical properties of gamma-irradiated and fresh corneas were evaluated with respect to light transmittance, hydration (swelling ratio), elastic modulus (compressive modulus by the indentation method), matrix organization (differential scanning calorimetry), and morphology (light and transmission electron microscopy). The biological properties of the gamma-irradiated cornea, including residual cell content and cellular biocompatibility, were evaluated by quantifying DNA content and measuring the proliferation rate of human corneal epithelial cells, respectively. Results: The hydration, light transmittance, elastic modulus, and proliferation rate of human corneal epithelial cells were not significantly different between fresh and gamma-irradiated corneas. However, differences were observed in tissue morphology, DNA content, and thermal properties. The density of collagen fibrils of the gamma-irradiated corneal sample (160.6 ± 33.2 fibrils/&mgr;m2) was significantly lower than that of the fresh corneal sample (310.0 ± 44.7 fibrils/&mgr;m2). Additionally, in the gamma-irradiated corneas, cell fragments—but not viable cells—were observed, supported by lower DNA content of the gamma-irradiated cornea (1.0 ± 0.1 &mgr;g/mg) than in fresh corneas (1.9 &mgr;g/mg). Moreover, the denaturation temperature of gamma-irradiated corneas (61.8 ± 1.1 °C) was significantly lower than that of fresh corneas (66.1 ± 1.9 °C). Conclusions: Despite structural changes due to irradiation, the physical and biological properties of the gamma-irradiated cornea remain similar to the fresh cornea. These factors, combined with a decreased risk of rejection and longer shelf life, make the gamma-irradiated tissue a viable and clinically desired option in various ophthalmic procedures.
Scientific Reports | 2017
Qiaozhi Lu; Hongbo Yin; Michael P. Grant; Jennifer H. Elisseeff
Dry eye is a complicated ocular surface disease whose exact pathogenesis is not yet fully understood. For the therapeutic evaluation and pathogenesis study of dry eye, we established an in vitro three-dimensional (3D) coculture model for the ocular surface. It is composed of rabbit conjunctival epithelium and lacrimal gland cell spheroids, and recapitulates the aqueous and mucin layers of the tear film. We first investigated the culture conditions for both cell types to optimize their secretory functions, by employing goblet cell enrichment, air-lifting culture, and 3D spheroid formation techniques. The coculture of the two cell components leads to elevated secretion and higher expression of tear secretory markers. We also compared several coculture systems, and found that direct cell contact between the two cell types significantly increased tear secretion. Inflammation was induced to mimic dry eye disease in the coculture model system. Our results showed that the coculture system provides a more physiologically relevant therapeutic response compared to monocultures. Our work provides a complex 3D model as a recapitulation of the ocular surface and tear film system, which can be further developed as a model for dry eye disease and therapeutic evaluation.