Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qibin Zhang is active.

Publication


Featured researches published by Qibin Zhang.


Journal of Proteome Research | 2009

A Perspective on the Maillard Reaction and the Analysis of Protein Glycation by Mass Spectrometry: Probing the Pathogenesis of Chronic Disease

Qibin Zhang; Jennifer M. Ames; Richard D. Smith; John W. Baynes; Thomas O. Metz

The Maillard reaction, starting from the glycation of protein and progressing to the formation of advanced glycation end-products (AGEs), is implicated in the development of complications of diabetes mellitus, as well as in the pathogenesis of cardiovascular, renal, and neurodegenerative diseases. In this perspective review, we provide an overview on the relevance of the Maillard reaction in the pathogenesis of chronic disease and discuss traditional approaches and recent developments in the analysis of glycated proteins by mass spectrometry. We propose that proteomics approaches, particularly bottom-up proteomics, will play a significant role in analyses of clinical samples leading to the identification of new markers of disease development and progression.


Biomarkers in Medicine | 2007

The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery

Thomas O. Metz; Qibin Zhang; Jason S. Page; Yufeng Shen; Stephen J. Callister; Jon M. Jacobs; Richard D. Smith

The future utility of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discover will be discussed, beginning with a brief description of the evolution of metabolomics and the utilization of the three most popular analytical platforms in such studies: NMR, GC-MS, and LC-MS. Emphasis is placed on recent developments in high-efficiency LC separations, sensitive electrospray ionization approaches, and the benefits to incorporating both in LC-MS-based approaches. The advantages and disadvantages of various quantitative approaches are reviewed, followed by the current LC-MS-based tools available for candidate biomarker characterization and identification. Finally, a brief prediction on the future path of LC-MS-based methods in metabolic profiling and metabolomic studies is given.


Journal of Chromatography A | 2016

Comprehensive untargeted lipidomic analysis using core–shell C30 particle column and high field orbitrap mass spectrometer

Mónica Narváez-Rivas; Qibin Zhang

The goal of untargeted lipidomics is to have high throughput, yet comprehensive and unambiguous identification and quantification of lipids. Novel stationary phases in LC separation and new mass spectrometric instruments capable of high mass resolving power and faster scanning rate are essential to achieving this goal. In this work, 4 reversed phase LC columns coupled with a high field quadrupole orbitrap mass spectrometer (Q Exactive HF) were thoroughly compared using complex lipid standard mixture and rat plasma and liver samples. A good separation of all lipids was achieved in 24min of gradient. The columns compared include C30 and C18 functionalization on either core-shell or totally porous silica particles, with size ranging from 1.7 to 2.6μm. Accucore C30 column showed the narrowest peaks and highest theoretical plate number, and excellent peak capacity and retention time reproducibility (<1% standard deviation). As a result, it resulted in 430 lipid species identified from rat plasma and rat liver samples with highest confidence. The high resolution offered by the up-front RPLC allowed discrimination of cis/trans isomeric lipid species, and the high field orbitrap mass spectrometer afforded the clear distinction of isobaric lipid species in full scan MS and the unambiguous assignment of sn-positional isomers for lysophospholipids in MS/MS. Taken together, the high efficiency LC separation and high mass resolving MS analysis are very promising tools for untargeted lipidomics analysis.


Proteomics | 2016

Type 1 diabetes cadaveric human pancreata exhibit a unique exocrine tissue proteomic profile.

Chih-Wei Liu; Mark A. Atkinson; Qibin Zhang

Type 1 diabetes (T1D) is an autoimmune disorder resulting from a self‐destruction of pancreatic islet beta cells. The complete proteome of the human pancreas, where both the dysfunctional beta cells and their proximal environment co‐exist, remains unknown. Here, we used TMT10‐based isobaric labeling and multidimensional LC‐MS/MS to quantitatively profile the differences between pancreatic head region tissues from T1D (N = 5) and healthy subjects (N = 5). Among the 5357 (1% false discovery rate) confidently identified proteins, 145 showed statistically significant dysregulation between T1D and healthy subjects. The differentially expressed pancreatic proteome supports the growing notion of a potential role for exocrine pancreas involvement in T1D. This study also demonstrates the utility for this approach to analyze dysregulated proteins as a means to investigate islet biology, pancreatic pathology and T1D pathogenesis.


Analytica Chimica Acta | 2017

Off-line mixed-mode liquid chromatography coupled with reversed phase high performance liquid chromatography-high resolution mass spectrometry to improve coverage in lipidomics analysis

Mónica Narváez-Rivas; Ngoc Vu; Guan-yuan Chen; Qibin Zhang

The confident identification and in-depth profiling of molecular lipid species remain to be a challenge in lipidomics analysis. In this work, an off-line two-dimensional mixed-mode and reversed-phase liquid chromatography (RPLC) method combined with high-field quadrupole orbitrap mass spectrometer (Q Exactive HF) was developed to profile lipids from complex biological samples. In the first dimension, 22 different lipid classes were separated on a monolithic silica column with elution order from neutral to polar lipids. A total of 13 fractions were collected and run on a RPLC C30 column in the second dimension for further separation of the lipid molecular species based on their hydrophobicity, with the elution order being determined by both the length and degree of unsaturation in the fatty-acyl chain. The method was applied to analyze lipids extracted from rat plasma and rat liver. Fatty acid methyl ester analysis by gas chromatography-mass spectrometry was used to identify the fatty acyls from total lipid extracts, which provided a more confident identification of the lipid species present in these samples. More than 800 lipids were identified in each sample and their molecular structures were confidentially confirmed using tandem mass spectrometry (MS/MS). The number of lipid molecular species identified in both rat plasma and rat liver by this off-line two-dimensional method is approximately twice of that by one-dimensional RPLC-MS/MS employing a C30 column. This off-line two-dimensional mixed-mode LC-RPLC-MS/MS method is a promising technique for comprehensive lipid profiling in complex biological matrices.


Inflammatory Bowel Diseases | 2015

Serum Proteome Profiles in Stricturing Crohn's Disease: A Pilot Study.

Peter Townsend; Qibin Zhang; Jason Shapiro; Bobbie-Jo M. Webb-Robertson; Lisa Bramer; Athena A. Schepmoes; Karl K. Weitz; Meaghan Mallette; Heather Moniz; Renee Bright; Marjorie Merrick; Samir A. Shah; Bruce E. Sands; Neal S. LeLeiko

Background:Crohns disease (CD) is a form of inflammatory bowel disease with different described behaviors, including stricture. At present, there are no laboratory studies that can differentiate stricturing CD from other phenotypes of inflammatory bowel disease. We performed a pilot study to examine differences in the proteome among patients with stricturing CD, nonstricturing CD, and ulcerative colitis. Methods:Serum samples were selected from the Ocean State Crohns and Colitis Area Registry, an established cohort of patients with inflammatory bowel disease. Patients with CD with surgically resected stricture were matched with similar patients with CD without known stricture and with ulcerative colitis. Serum samples from each patient were digested and analyzed using liquid chromatography–mass spectrometry to characterize the proteome. Statistical analyses were performed to identify peptides and proteins that can differentiate CD with stricture. Results:Samples from 9 patients in each group (27 total patients) were analyzed. Baseline demographic characteristics were similar among the 3 groups. We quantified 7668 peptides and 897 proteins for analysis. Receiver operating characteristic analysis identified a subset of peptides with an area under the curve greater than 0.9, indicating greater separation potential. Partial least squares discriminant analysis was able to distinguish among the three groups with up to 70% accuracy by peptides and up to 80% accuracy by proteins. We identified the significantly different proteins and peptides and determined their function based on previously published literature. Conclusions:The serum of patients with stricturing CD, nonstricturing CD, and ulcerative colitis is distinguishable through proteomic analysis. Some of the proteins that differentiate the stricturing phenotype have been implicated in complement activation, fibrinolytic pathways, and lymphocyte adhesion.


Rapid Communications in Mass Spectrometry | 2017

Ozone induced dissociation on a traveling wave high resolution mass spectrometer for determination of double bond position in lipids

Ngoc Vu; Jeffery Mark Brown; Kevin Giles; Qibin Zhang

RATIONALE The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. METHODS Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. RESULTS Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. CONCLUSIONS This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics.


Journal of Proteomics | 2017

Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection

Lina Zhang; Giacomo Lanzoni; Matteo Battarra; Luca Inverardi; Qibin Zhang

The etiology of Type 1 Diabetes (T1D) remains elusive. Enzymatically isolated and cultured (EIC) islets cannot fully reflect the natural protein composition and disease process of in vivo islets, because of the stress from isolation procedures. In order to study islet protein composition in conditions close to the natural environment, we performed proteomic analysis of EIC islets, and laser capture microdissected (LCM) human islets and acinar tissue from fresh-frozen pancreas sections of three cadaveric donors. 1104 and 706 proteins were identified from 6 islets equivalents (IEQ) of LCM islets and acinar tissue, respectively. The proteomic profiles of LCM islets were reproducible within and among cadaveric donors. The endocrine hormones were only detected in LCM islets, whereas catalytic enzymes were significantly enriched in acinar tissue. Furthermore, high overlap (984 proteins) and similar function distribution were found between LCM and EIC islets proteomes, except that EIC islets had more acinar contaminants and stress-related signal transducer activity proteins. The comparison among LCM islets, LCM acinar tissue and EIC islets proteomes indicates that LCM combined with proteomic methods enables accurate and unbiased profiling of islet proteome from frozen pancreata. This paves the way for proteomic studies on human islets during the progression of T1D. SIGNIFICANCE The etiological agent triggering autoimmunity against beta cells in Type 1 diabetes (T1D) remains obscure. The in vitro models available (enzymatically isolated and cultured islets, EIC islets) do not accurately reflect what happens in vivo due to lack of the natural environment where islets exist and the preparation-induced changes in cell physiology. The importance of this study is that we investigated the feasibility of laser capture microdissection (LCM) for the isolation of intact islets from frozen cadaveric pancreatic tissue sections. We compared the protein profile of LCM islets (9 replicates from 3 cadaveric donors) with that of both LCM acinar tissues (6 replicates from the same 3 cadaveric donor as LCM islets) and EIC islets (at least 4 replicates for each sample with the same islets equivalents) by using proteomics techniques with advanced instrumentation, nanoLC-Q Exactive HF Orbitrap mass spectrometry (nano LC-MS/MS). The results demonstrate that the LCM method is reliable in isolating islets with an intact environment. LCM-based islet proteomics is a feasible approach to obtain good proteome coverage for assessing the pathology of T1D using cadaveric pancreatic samples, even from very small sample amounts. Future applications of this LCM-based proteomic method may help us understand the pathogenesis of T1D and identify potential biomarkers for T1D diagnosis at an early stage.


Journal of Proteomics | 2017

Temporal profiles of plasma proteome during childhood development

Chih-Wei Liu; Lisa Bramer; Bobbie-Jo M. Webb-Robertson; Kathleen Waugh; Marian Rewers; Qibin Zhang

Human blood plasma proteome reflects physiological changes associated with a childs development as well as development of disease states. While age-specific normative values are available for proteins routinely measured in clinical practice, there is paucity of comprehensive longitudinal data regarding changes in human plasma proteome during childhood. We applied TMT-10plex isobaric labeling-based quantitative proteomics to longitudinally profile the plasma proteome in 10 healthy children during their development, each with 9 serial time points from 9months to 15years of age. In total, 1828 protein groups were identified at peptide and protein level false discovery rate of 1% and with at least two razor and unique peptides. The longitudinal expression profiles of 1747 protein groups were statistically modeled and their temporal changes were categorized into 7 different patterns. The patterns and relative abundance of proteins obtained by LC-MS were also verified with ELISA. To our knowledge, this study represents the most comprehensive longitudinal profiling of human plasma proteome to date. The temporal profiles of plasma proteome obtained in this study provide a comprehensive resource and reference for biomarker studies in childhood diseases. Biological significance: A pediatric plasma proteome database with longitudinal expression patterns of 1747 proteins from neonate to adolescence was provided to the research community. 970 plasma proteins had age-dependent expression trends, which demonstrated the importance of longitudinal profiling study to identify the potential biomarkers specific to childhood diseases, and the requirement of strictly age-matched clinical samples in a cross-sectional study in pediatric population.


Journal of Proteomics | 2018

Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of Type 1 Diabetes progression

Chih-Wei Liu; Lisa Bramer; Bobbie-Jo M. Webb-Robertson; Kathleen Waugh; Marian Rewers; Qibin Zhang

Blood markers other than islet autoantibodies are greatly needed to indicate the pancreatic beta cell destruction process as early as possible, and more accurately reflect the progression of Type 1 Diabetes Mellitus (T1D). To this end, a longitudinal proteomic profiling of human plasma using TMT-10plex-based LC-MS/MS analysis was performed to track temporal proteomic changes of T1D patients (n=11) across 9 serial time points, spanning the period of T1D natural progression, in comparison with those of the matching healthy controls (n=10). To our knowledge, the current study represents the largest (>2000 proteins measured) longitudinal expression profiles of human plasma proteome in T1D research. By applying statistical trend analysis on the temporal expression patterns between T1D and controls, and Benjamini-Hochberg procedure for multiple-testing correction, 13 protein groups were regarded as having statistically significant differences during the entire follow-up period. Moreover, 16 protein groups, which play pivotal roles in response to oxidative stress, have consistently abnormal expression trend before seroconversion to islet autoimmunity. Importantly, the expression trends of two key reactive oxygen species-decomposing enzymes, Catalase and Superoxide dismutase were verified independently by ELISA. BIOLOGICAL SIGNIFICANCE The temporal changes of >2000 plasma proteins (at least quantified in two subjects), spanning the entire period of T1D natural progression were provided to the research community. Oxidative stress related proteins have consistently different dysregulated patterns in T1D group than in age-sex matched healthy controls, even prior to appearance of islet autoantibodies - the earliest sign of islet autoimmunity and pancreatic beta cell stress.

Collaboration


Dive into the Qibin Zhang's collaboration.

Top Co-Authors

Avatar

Thomas O. Metz

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bobbie-Jo M. Webb-Robertson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard D. Smith

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chih-Wei Liu

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Lisa Bramer

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marian Rewers

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Athena A. Schepmoes

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jong-Seo Kim

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Lina Zhang

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar

Ngoc Vu

University of North Carolina at Greensboro

View shared research outputs
Researchain Logo
Decentralizing Knowledge