Qichen Song
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qichen Song.
Materials Today Physics | 2017
Qichen Song; Te-Huan Liu; Jiawei Zhou; Zhiwei Ding; Gang Chen
Last few years have witnessed significant enhancement of thermoelectric figure of merit of lead telluride (PbTe) via nanostructuring. Despite the experimental progress, current understanding of the electron transport in PbTe is based on either band structure calculation using first principles with constant relaxation time approximation or empirical models, both relying on adjustable parameters obtained by fitting experimental data. Here, we report parameter-free first-principles calculation of electron and phonon transport properties of PbTe, including mode-by-mode electron-phonon scattering analysis, leading to detailed information on electron mean free paths and the contributions of electrons and phonons with different mean free paths to thermoelectric transport properties in PbTe. Such information will help to rationalize the use and optimization of nanosctructures to achieve high thermoelectric figure of merit.
Applied Physics Letters | 2016
Qichen Song; Jiawei Zhou; Laureen Meroueh; David Broido; Zhifeng Ren; Gang Chen
It is well known that the efficiency of a good thermoelectric material should be optimized with respect to doping concentration. However, much less attention has been paid to the optimization of the dopants energy level. Thermoelectric materials doped with shallow levels may experience a dramatic reduction in their figures of merit at high temperatures due to the excitation of minority carriers that reduces the Seebeck coefficient and increases bipolar heat conduction. Doping with deep level impurities can delay the excitation of minority carriers as it requires a higher temperature to ionize all dopants. We find through modeling that, depending on the material type and temperature range of operation, different impurity levels (shallow or deep) will be desired to optimize the efficiency of a thermoelectric material. For different materials, we further clarify where the most preferable position of the impurity level within the bandgap falls. Our research provides insight on why different dopants often aff...
Nature Communications | 2018
Jiawei Zhou; Hangtian Zhu; Te-Huan Liu; Qichen Song; Ran He; Jun Mao; Zihang Liu; Wuyang Ren; Bolin Liao; David J. Singh; Zhifeng Ren; Gang Chen
Modern society relies on high charge mobility for efficient energy production and fast information technologies. The power factor of a material—the combination of electrical conductivity and Seebeck coefficient—measures its ability to extract electrical power from temperature differences. Recent advancements in thermoelectric materials have achieved enhanced Seebeck coefficient by manipulating the electronic band structure. However, this approach generally applies at relatively low conductivities, preventing the realization of exceptionally high-power factors. In contrast, half-Heusler semiconductors have been shown to break through that barrier in a way that could not be explained. Here, we show that symmetry-protected orbital interactions can steer electron–acoustic phonon interactions towards high mobility. This high-mobility regime enables large power factors in half-Heuslers, well above the maximum measured values. We anticipate that our understanding will spark new routes to search for better thermoelectric materials, and to discover high electron mobility semiconductors for electronic and photonic applications.The intrinsic origin of high-power factors observed in half-Heusler alloys remains elusive, limiting the design of new thermoelectric materials. In this work, the authors reveal it is due to weakened electron–acoustic phonon coupling, originating from crystal symmetry protection of non-bonding orbitals.
Energy and Environmental Science | 2018
Qian Zhang; Qichen Song; Xinyu Wang; Jingying Sun; Qing Zhu; Keshab Dahal; Xi Lin; Feng Cao; Jiawei Zhou; Shuo Chen; Gang Chen; Jun Mao; Zhifeng Ren
Thermoelectric properties are heavily dependent on the carrier concentration, and therefore the optimization of carrier concentration plays a central role in achieving high thermoelectric performance. The optimized carrier concentration is highly temperature-dependent and could even possibly vary within one order of magnitude in the temperature range of several hundreds of Kelvin. Practically, however, the traditional doping strategy will only lead to a constant carrier concentration, and thus the thermoelectric performance is only optimized within a limited temperature range. Here, we demonstrate that a temperature-dependent carrier concentration can be realized by simultaneously introducing shallow and deep defect levels. In this work, iodine (I) and indium (In) are co-doped in PbTe, where iodine acts as the shallow donor level that supplies sufficient electrons and indium builds up the localized half-filled deep defect state in the band gap. The indium deep defect state traps electrons at a lower temperature and the trapped electrons will be thermally activated back to the conduction band when the temperature rises. In this way, the carrier concentration can be engineered as temperature-dependent, which matches the theoretically predicted optimized carrier concentration over the whole temperature range. As a result, a room temperature ZT of ∼0.4 and a peak ZT of ∼1.4 at 773 K were obtained in the n-type In/I co-doped PbTe, leading to a record-high average ZT of ∼1.04 in the temperature range of 300 to 773 K. Importantly, since deep defect levels also exist in other materials, the strategy of deep defect level engineering should be widely applicable to a variety of materials for enhancing the thermoelectric performance across a broad temperature range.
Nano Letters | 2017
Mingda Li; Qichen Song; Te-Huan Liu; Laureen Meroueh; G. D. Mahan; Mildred S. Dresselhaus; Gang Chen
It is a fundamental postulate that quasiparticles in 3D space obey either Bosonic or Fermionic statistics, satisfying either canonical commutation or anti-commutation relation. However, under certain constraints, such as the 2D dimensional constraint, canonical quantization algebra is allowed to break down, and quasiparticles can obey other statistics, such as anyonic statistics. In this study, we show that dislons- the quasiparticles in 3D due to quantized displacement field of a dislocation- can also obey neither Bosonic nor Fermionic statistics due to the topological constraint of the dislocation. With this theory, an effective electron field theory based on the electron-dislon interaction is obtained, which consists of two types of interactions. One classical-type of interaction is reducible to the well-known deformation potential scattering, and the other quantum-type of interaction indicates an effective attraction between electrons. The role of dislocations in superconductivity is clarified as the competition between the classical and quantum interactions, showing excellent agreement with experiments.Despite the established knowledge that crystal dislocations can affect a materials superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a materials superconducting transition temperature (Tc) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on Tc. These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced Tc reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance Tc. This provides a new pathway for engineering a materials superconducting properties by using dislocations as an additional degree of freedom.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Te-Huan Liu; Jiawei Zhou; Mingda Li; Zhiwei Ding; Qichen Song; Bolin Liao; Liang Fu; Gang Chen
Significance Using ab initio simulations, we uncover the electron mean-free-path (MFP) spectrum in Dirac material and specifically show how the thermoelectric efficiency can greatly benefit from a distinct, monotonically decreasing trend of electron MFPs arising from the linear energy-momentum dispersion implied by the Dirac band topology. In the past, it was generally assumed that for the nanostructuring approach to be effective, one should design nanostructures to have characteristic length larger than the electron MFP but smaller than the phonon MFP to reduce thermal conductivity. Our results show that enhancement in thermoelectric performance can be achieved in Dirac materials even when they are smaller than the electron MFP by selectively filtering out long-MFP electrons that are harmful to the Seebeck coefficient. Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit (zT) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons’ mean free paths (MFPs) are typically much longer than electrons’. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.
Physical Review B | 2017
Mingda Li; Qichen Song; Weiwei Zhao; Joseph A. Garlow; Te-Huan Liu; Lijun Wu; Yimei Zhu; Jagadeesh S. Moodera; Moses H. W. Chan; Gang Chen; Cui-Zu Chang
The possible realization of dissipationless chiral edge current in a topological insulator / magnetic insulator heterostructure is based on the condition that the magnetic proximity exchange coupling at the interface is dominated by the Dirac surface states of the topological insulator. Here we report a polarized neutron reflectometry observation of Dirac electrons mediated magnetic proximity effect in a bulk-insulating topological insulator (Bi
Physical Review B | 2018
Te-Huan Liu; Bai Song; Laureen Meroueh; Zhiwei Ding; Qichen Song; Jiawei Zhou; Mingda Li; Gang Chen
_{0.2}
Bulletin of the American Physical Society | 2018
Qichen Song; Jiawei Zhou; Te-Huan Liu; Gang Chen
Sb
Bulletin of the American Physical Society | 2018
Jiawei Zhou; Hangtian Zhu; Te-Huan Liu; Qichen Song; Ran He; Jun Mao; Zihang Liu; Wuyang Ren; Bolin Liao; David J. Singh; Zhifeng Ren; Gang Chen
_{0.8}