Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qifa Ke is active.

Publication


Featured researches published by Qifa Ke.


computer vision and pattern recognition | 2009

Bundling features for large scale partial-duplicate web image search

Zhong Wu; Qifa Ke; Michael Isard; Jian Sun

In state-of-the-art image retrieval systems, an image is represented by a bag of visual words obtained by quantizing high-dimensional local image descriptors, and scalable schemes inspired by text retrieval are then applied for large scale image indexing and retrieval. Bag-of-words representations, however: 1) reduce the discriminative power of image features due to feature quantization; and 2) ignore geometric relationships among visual words. Exploiting such geometric constraints, by estimating a 2D affine transformation between a query image and each candidate image, has been shown to greatly improve retrieval precision but at high computational cost. In this paper we present a novel scheme where image features are bundled into local groups. Each group of bundled features becomes much more discriminative than a single feature, and within each group simple and robust geometric constraints can be efficiently enforced. Experiments in Web image search, with a database of more than one million images, show that our scheme achieves a 49% improvement in average precision over the baseline bag-of-words approach. Retrieval performance is comparable to existing full geometric verification approaches while being much less computationally expensive. When combined with full geometric verification we achieve a 77% precision improvement over the baseline bag-of-words approach, and a 24% improvement over full geometric verification alone.


computer vision and pattern recognition | 2005

Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming

Qifa Ke; Takeo Kanade

Matrix factorization has many applications in computer vision. Singular value decomposition (SVD) is the standard algorithm for factorization. When there are outliers and missing data, which often happen in real measurements, SVD is no longer applicable. For robustness iteratively re-weighted least squares (IRLS) is often used for factorization by assigning a weight to each element in the measurements. Because it uses L/sub 2/ norm, good initialization in IRLS is critical for success, but is nontrivial. In this paper, we formulate matrix factorization as a L/sub 1/ norm minimization problem that is solved efficiently by alternative convex programming. Our formulation 1) is robust without requiring initial weighting, 2) handles missing data straightforwardly, and 3) provides a framework in which constraints and prior knowledge (if available) can be conveniently incorporated. In the experiments we apply our approach to factorization-based structure from motion. It is shown that our approach achieves better results than other approaches (including IRLS) on both synthetic and real data.


International Journal of Computer Vision | 2014

A Multi-View Embedding Space for Modeling Internet Images, Tags, and Their Semantics

Yunchao Gong; Qifa Ke; Michael Isard; Svetlana Lazebnik

This paper investigates the problem of modeling Internet images and associated text or tags for tasks such as image-to-image search, tag-to-image search, and image-to-tag search (image annotation). We start with canonical correlation analysis (CCA), a popular and successful approach for mapping visual and textual features to the same latent space, and incorporate a third view capturing high-level image semantics, represented either by a single category or multiple non-mutually-exclusive concepts. We present two ways to train the three-view embedding: supervised, with the third view coming from ground-truth labels or search keywords; and unsupervised, with semantic themes automatically obtained by clustering the tags. To ensure high accuracy for retrieval tasks while keeping the learning process scalable, we combine multiple strong visual features and use explicit nonlinear kernel mappings to efficiently approximate kernel CCA. To perform retrieval, we use a specially designed similarity function in the embedded space, which substantially outperforms the Euclidean distance. The resulting system produces compelling qualitative results and outperforms a number of two-view baselines on retrieval tasks on three large-scale Internet image datasets.


computer vision and pattern recognition | 2013

Optimized Product Quantization for Approximate Nearest Neighbor Search

Tiezheng Ge; Kaiming He; Qifa Ke; Jian Sun

Product quantization is an effective vector quantization approach to compactly encode high-dimensional vectors for fast approximate nearest neighbor (ANN) search. The essence of product quantization is to decompose the original high-dimensional space into the Cartesian product of a finite number of low-dimensional subspaces that are then quantized separately. Optimal space decomposition is important for the performance of ANN search, but still remains unaddressed. In this paper, we optimize product quantization by minimizing quantization distortions w.r.t. the space decomposition and the quantization codebooks. We present two novel methods for optimization: a non-parametric method that alternatively solves two smaller sub-problems, and a parametric method that is guaranteed to achieve the optimal solution if the input data follows some Gaussian distribution. We show by experiments that our optimized approach substantially improves the accuracy of product quantization for ANN search.


conference on decision and control | 2004

Real-time and 3D vision for autonomous small and micro air vehicles

Takeo Kanade; Omead Amidi; Qifa Ke

Autonomous control of small and micro air vehicles (SMAV) requires precise estimation of both vehicle state and its surrounding environment. Small cameras, which are available today at very low cost, are attractive sensors for SMAV. 3D vision by video and laser scanning has distinct advantages in that they provide positional information relative to objects and environments, in which the vehicle operates, that is critical to obstacle avoidance and mapping of the environment. This paper presents work on real-time 3D vision algorithms for recovering motion and structure from a video sequence, 3D terrain mapping from a laser range finder onboard a small autonomous helicopter, and sensor fusion of visual and GPS/INS sensors.


computer vision and pattern recognition | 2001

A subspace approach to layer extraction

Qifa Ke; Takeo Kanade

Representing images with layers has many important applications, such as video compression, motion analysis, and 3D scene analysis. This paper presents an approach to reliably extracting layers from images by taking advantages of the fact that homographies induced by planar patches in the scene form a low dimensional linear subspace. Layers in the input images will be mapped in the subspace, where it is proven that they form well-defined clusters and can be reliably identified by a simple mean-shift based clustering algorithm. Global optimality is achieved since all valid regions are simultaneously taken into account, and noise can be effectively reduced by enforcing the subspace constraint. Good layer descriptions are shown to be extracted in the experimental results.


international conference on computer vision | 2005

Quasiconvex optimization for robust geometric reconstruction

Qifa Ke; Takeo Kanade

Geometric reconstruction problems in computer vision are often solved by minimizing a cost function that combines the reprojection errors in the 2D images. In this paper, we show that, for various geometric reconstruction problems, their reprojection error functions share a common and quasiconvex formulation. Based on the quasiconvexity, we present a novel quasiconvex optimization framework in which the geometric reconstruction problems are formulated as a small number of small-scale convex programs that are readily solvable. Our final reconstruction algorithm is simple and has intuitive geometric interpretation. In contrast to existing local minimization approaches, our algorithm is deterministic and guarantees a predefined accuracy of the minimization result. The quasiconvexity also provides an intuitive method to handle directional uncertainties and outliers in measurements. For a large-scale problem or in a situation where computational resources are constrained, we provide an efficient approximation that gives a good upper bound (but not global minimum) on the reconstruction error. We demonstrate the effectiveness of our algorithm by experiments on both synthetic and real data.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2014

Optimized Product Quantization

Tiezheng Ge; Kaiming He; Qifa Ke; Jian Sun

Product quantization (PQ) is an effective vector quantization method. A product quantizer can generate an exponentially large codebook at very low memory/time cost. The essence of PQ is to decompose the high-dimensional vector space into the Cartesian product of subspaces and then quantize these subspaces separately. The optimal space decomposition is important for the PQ performance, but still remains an unaddressed issue. In this paper, we optimize PQ by minimizing quantization distortions w.r.t the space decomposition and the quantization codebooks. We present two novel solutions to this challenging optimization problem. The first solution iteratively solves two simpler sub-problems. The second solution is based on a Gaussian assumption and provides theoretical analysis of the optimality. We evaluate our optimized product quantizers in three applications: (i) compact encoding for exhaustive ranking [1], (ii) building inverted multi-indexing for non-exhaustive search [2], and (iii) compacting image representations for image retrieval [3]. In all applications our optimized product quantizers outperform existing solutions.


computer vision and pattern recognition | 2003

Transforming camera geometry to a virtual downward-looking camera: robust ego-motion estimation and ground-layer detection

Qifa Ke; Takeo Kanade

This paper presents a robust method to solve two coupled problems, ground-layer detection and vehicle ego-motion estimation, which appear in visual navigation. We virtually rotate the camera to the downward-looking pose in order to exploit the fact that the vehicle motion is roughly constrained to be planar motion on the ground. This camera geometry transformation together with the planar motion constraint will: 1) eliminate the ambiguity between rotational and translation ego-motion parameters, and 2) improve the Hessian matrix condition in the direct motion estimation process. The virtual downward-looking camera enables us to estimate the planar ego-motions even for small image patches. Such local measurements are then combined together, by a robust weighting scheme based on both ground plane geometry and motion compensated intensity residuals, for a global ego-motion estimation and ground plane detection. We demonstrate the effectiveness of our method by experiments on both synthetic and real data.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2007

Quasiconvex Optimization for Robust Geometric Reconstruction

Qifa Ke; Takeo Kanade

Geometric reconstruction problems in computer vision are often solved by minimizing a cost function that combines the reprojection errors in the 2D images. In this paper, we show that, for various geometric reconstruction problems, their reprojection error functions share a common and quasiconvex formulation. Based on the quasiconvexity, we present a novel quasiconvex optimization framework in which the geometric reconstruction problems are formulated as a small number of small-scale convex programs that are readily solvable. Our final reconstruction algorithm is simple and has intuitive geometric interpretation. In contrast to existing local minimization approaches, our algorithm is deterministic and guarantees a predefined accuracy of the minimization result. The quasiconvexity also provides an intuitive method to handle directional uncertainties and outliers in measurements. For a large-scale problem or in a situation where computational resources are constrained, we provide an efficient approximation that gives a good upper bound (but not global minimum) on the reconstruction error. We demonstrate the effectiveness of our algorithm by experiments on both synthetic and real data.

Collaboration


Dive into the Qifa Ke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeo Kanade

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge