Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qifa Zhang is active.

Publication


Featured researches published by Qifa Zhang.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Strategies for developing Green Super Rice

Qifa Zhang

From a global viewpoint, a number of challenges need to be met for sustainable rice production: (i) increasingly severe occurrence of insects and diseases and indiscriminate pesticide applications; (ii) high pressure for yield increase and overuse of fertilizers; (iii) water shortage and increasingly frequent occurrence of drought; and (iv) extensive cultivation in marginal lands. A combination of approaches based on the recent advances in genomic research has been formulated to address these challenges, with the long-term goal to develop rice cultivars referred to as Green Super Rice. On the premise of continued yield increase and quality improvement, Green Super Rice should possess resistances to multiple insects and diseases, high nutrient efficiency, and drought resistance, promising to greatly reduce the consumption of pesticides, chemical fertilizers, and water. Large efforts have been focused on identifying germplasms and discovering genes for resistance to diseases and insects, N- and P-use efficiency, drought resistance, grain quality, and yield. The approaches adopted include screening of germplasm collections and mutant libraries, gene discovery and identification, microarray analysis of differentially regulated genes under stressed conditions, and functional test of candidate genes by transgenic analysis. Genes for almost all of the traits have now been isolated in a global perspective and are gradually incorporated into genetic backgrounds of elite cultivars by molecular marker-assisted selection or transformation. It is anticipated that such strategies and efforts would eventually lead to the development of Green Super Rice.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid

Jinping Hua; Yongzhong Xing; Weiren Wu; Caiguo Xu; Xinli Sun; Sibin Yu; Qifa Zhang

The genetic basis of heterosis of an elite rice hybrid was investigated by using an “immortalized F2” population produced by randomly permutated intermating of 240 recombinant inbred lines from a cross between the parents of Shanyou 63, the most widely cultivated hybrid in China. Measurements of heterosis for crosses in the immortalized F2 population were obtained from replicated field trials over 2 years by inter-planting the hybrids with the parental recombinant inbred lines. The analyses were conducted making use of a linkage map comprising 231 segregating molecular marker loci covering the entire rice genome. Heterotic effects were detected at 33 loci for the four traits with modified composite interval mapping. The heterotic loci showed little overlap with quantitative trait loci for trait performance, suggesting that heterosis and trait performance may be conditioned by different sets of loci. Large numbers of digenic interactions were resolved by using two-way ANOVA and confirmed by randomization tests. All kinds of genetic effects, including partial-, full-, and overdominance at single-locus level and all three forms of digenic interactions (additive by additive, additive by dominance, and dominance by dominance), contributed to heterosis in the immortalized F2 population, indicating that these genetic components were not mutually exclusive in the genetic basis of heterosis. Heterotic effects at the single-locus level, in combination with the marginal advantages of double heterozygotes caused by dominance by dominance interaction at the two-locus level could adequately explain the genetic basis of heterosis in Shanyou 63. These results may help reconcile the century-long debate concerning the genetic basis of heterosis.


Genetics | 2005

Genetic Basis of Drought Resistance at Reproductive Stage in Rice: Separation of Drought Tolerance From Drought Avoidance

Bing Yue; Weiya Xue; Lizhong Xiong; Xinqiao Yu; Li-Jun Luo; Kehui Cui; Deming Jin; Yongzhong Xing; Qifa Zhang

Drought tolerance (DT) and drought avoidance (DA) are two major mechanisms in drought resistance of higher plants. In this study, the genetic bases of DT and DA at reproductive stage in rice were analyzed using a recombinant inbred line population from a cross between an indica lowland and a tropical japonica upland cultivar. The plants were grown individually in PVC pipes and two cycles of drought stress were applied to individual plants with unstressed plants as the control. A total of 21 traits measuring fitness, yield, and the root system were investigated. Little correlation of relative yield traits with potential yield, plant size, and root traits was detected, suggesting that DT and DA were well separated in the experiment. A genetic linkage map consisting of 245 SSR markers was constructed for mapping QTL for these traits. A total of 27 QTL were resolved for 7 traits of relative performance of fitness and yield, 36 QTL for 5 root traits under control, and 38 for 7 root traits under drought stress conditions, suggesting the complexity of the genetic bases of both DT and DA. Only a small portion of QTL for fitness- and yield-related traits overlapped with QTL for root traits, indicating that DT and DA had distinct genetic bases.


Plant Molecular Biology | 2004

Rice mutant resources for gene discovery

Hirohiko Hirochika; Emmanuel Guiderdoni; Gynheung An; Yue-Ie C. Hsing; Moo Young Eun; Chang-deok Han; Narayana M. Upadhyaya; Qifa Zhang; Andy Pereira; Venkatesan Sundaresan; Hei Leung

With the completion of genomic sequencing of rice, rice has been firmly established as a model organism for both basic and applied research. The next challenge is to uncover the functions of genes predicted by sequence analysis. Considering the amount of effort and the diversity of disciplines required for functional analyses, extensive international collaboration is needed for this next goal. The aims of this review are to summarize the current status of rice mutant resources, key tools for functional analysis of genes, and our perspectives on how to accelerate rice gene discovery through collaboration.


Plant Physiology | 2009

Mutant resources in rice for functional genomics of the grasses.

Arjun Krishnan; Emmanuel Guiderdoni; Gynheung An; Yue-Ie C. Hsing; Chang-deok Han; Myung Chul Lee; Su-May Yu; Narayana M. Upadhyaya; Qifa Zhang; Venkatesan Sundaresan; Hirohiko Hirochika; Hei Leung; Andy Pereira

Rice ( Oryza sativa ) is the reference genome for the grasses, including cereals. The complete genome sequence lays the foundation for comparative genomics to the other grasses based on genome structure and individual gene function ([Devos, 2005][1]; [International Rice Genome Sequencing Project,


Plant Molecular Biology | 2006

Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray

Xingming Lian; Shiping Wang; Jianwei Zhang; Qi Feng; Lida Zhang; Danlin Fan; Xianghua Li; Dejun Yuan; Bin Han; Qifa Zhang

Development of crop varieties with high nitrogen use efficiency (NUE) is imperative for sustainable agriculture. Understanding how plant genes respond to low N stress is essential for formulating approaches to manipulating genes for improving NUE. In this study we analyzed the expression profiles of an indica rice cultivar Minghui 63 at seedling stage at 20xa0min, 1 and 2xa0h after low N stress with the normal N as the control, using a microarray of 11,494 rice ESTs representing 10,422 unique genes. While no significant difference was detected in the leaf tissue, a total of 471 ESTs were detected as responsive to low N stress in the root tissue with 115 ESTs showing up-regulation and 358 ESTs showing down-regulation. The analysis of expression profiles after low N stress identified following patterns: (1) the genes involved in photosynthesis and energy metabolism were down-regulated rapidly; (2) many of the genes involved in early responses to biotic and abiotic stresses were up-regulated while many other stress responsive genes were down-regulated; (3) regulatory genes including transcription factors and ones involved in signal transduction were both up- and down-regulated; and (4) the genes known to be involved in N uptake and assimilation showed little response to the low N stress. The challenges for future studies are to characterize the functional roles of the low N stress responsive genes in N metabolisms, including the large number of genes presently with unknown functions.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley

Huilan Chen; Shiping Wang; Yongzhong Xing; Caiguo Xu; Patrick M. Hayes; Qifa Zhang

Comparative genomic analyses have revealed extensive colinearity in gene orders in distantly related taxa in mammals and grasses, which opened new horizons for evolutionary study. The objective of our study was to assess syntenic relationships of quantitative trait loci (QTL) for disease resistance in cereals by using a model system in which rice and barley were used as the hosts and the blast fungus Pyricularia grisea Sacc. as the pathogen. In total, 12 QTL against three isolates were identified in rice; two had effects on all three isolates, and the other 10 had effects on only one or two of the three isolates. Twelve QTL for blast resistance were identified in barley; one had effect on all three isolates, and the other 11 had effects on only one or two of the three isolates. The observed isolate specificity led to a hypothesis about the durability of quantitative resistance commonly observed in many plant host-pathogen systems. Four pairs of the QTL showed corresponding map positions between rice and barley, two of the four QTL pairs had complete conserved isolate specificity, and another two QTL pairs had partial conserved isolate specificity. Such corresponding locations and conserved specificity suggested a common origin and conserved functionality of the genes underlying the QTL for quantitative resistance and may have utility in gene discovery, understanding the function of the genomes, and identifying the evolutionary forces that structured the organization of the grass genomes.


Phytopathology | 2002

New Gene for Bacterial Blight Resistance in Rice Located on Chromosome 12 Identified from Minghui 63, an Elite Restorer Line

Huilan Chen; Shiping Wang; Qifa Zhang

ABSTRACT Bacterial blight, caused by Xanthomonas oryzae pv. oryzae, is a serious disease of rice worldwide. A new dominant gene for bacterial blight resistance in rice, Xa25(t), was identified from Minghui 63, a restorer line for a number of rice hybrids that are widely cultivated in China. This gene conferred resistance to Philippine race 9 (PXO339) of X. oryzae pv. oryzae in both seedling and adult stages. It was mapped to the centromeric region of chromosome 12, 2.5 cM from a disease resistance gene-homologous sequence, NBS109, and 7.3 cM from a restriction fragment length polymorphism marker, G1314. The genomic location of this gene is similar to the previously identified blast resistance genes, Pi-ta and Pi-ta2.


Plant Molecular Biology | 2006

Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs

Yi Huang; Lida Zhang; Jianwei Zhang; Dejun Yuan; Caiguo Xu; Xianghua Li; Dao-Xiu Zhou; Shiping Wang; Qifa Zhang

Despite the significant contributions of utilizing heterosis to crop productivity worldwide, the biological mechanisms of heterosis remained largely uncharacterized. In this study, we analyzed gene expression profiles of an elite rice hybrid and the parents at three stages of young panicle development, using a cDNA microarray consisting of 9198 expressed sequence tags (ESTs), with the objective to reveal patterns of gene expression that may be associated with heterosis in yield. A total of 8422 sequences showed hybridization signals in all three genotypes in at least one stage and 5771 sequences produced detectable signals in all slides. Significant differences in expression level were detected for 438 sequences among the three genotypes in at least one of the three stages, as determined by ANOVA validated with 100 permutations at Pxa0<xa00.05. Significant mid-parent heterosis was detected for 141 sequences, which demonstrated the following features: a much larger number of sequences showed negative heterosis than ones showing positive heterosis; genes functioning in DNA replication and repair tended to show positive heterosis; genes functioning in carbohydrate metabolism, lipid metabolism, energy metabolism, translation, protein degradation, and cellular information processing showed negative heterosis; both positive and negative heterosis were observed for genes in amino acid metabolism, transcription, signal transduction, plant defense and transportation. The results are indicative of the biochemical and physiological activities taking place in the hybrid relative to the parents. Identification of genes showing expression polymorphisms among different genotypes and heterotic expression in the hybrid may provide new avenues for exploring the biological mechanisms underlying heterosis.


Plant Molecular Biology | 2005

How can we use genomics to improve cereals with rice as a reference genome

Yunbi Xu; Susan R. McCouch; Qifa Zhang

Rice serves as a model crop for cereal genomics. The availability of complete genome sequences, together with various genomic resources available for both rice and Arabidopsis, have revolutionized our understanding of the genetic make-up of crop plants. Both macrocolinearity revealed by comparative mapping and microcolinearity revealed by sequence comparisons among the grasses indicate that sequencing and functional analysis of the rice genome will have a significant impact on other cereals in terms of both genomic studies and crop improvement. The availability of mutants, introgression libraries, and advanced transformation techniques make functional genomics in rice and other cereals more manageable than ever before. A wide array of genetic markers, including anchor markers for comparative mapping, SSRs and SNPs are widely used in genetic mapping, germplasm evaluation and marker assisted selection. An integrated database that combines genome information for rice and other cereals is key to the effective utilization of all genomics resources for cereal improvement. To maximize the potential of genomics for plant breeding, experiments must be further miniaturized and costs must be reduced. Many techniques, including targeted gene disruption or allele substitution, insertional mutagenesis, RNA interference and homologous recombination, need to be refined before they can be widely used in functional genomic analysis and plant breeding.

Collaboration


Dive into the Qifa Zhang's collaboration.

Top Co-Authors

Avatar

Shiping Wang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yongzhong Xing

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Caiguo Xu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Guiderdoni

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hei Leung

International Rice Research Institute

View shared research outputs
Top Co-Authors

Avatar

Bin Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dejun Yuan

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge