Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qifeng Bai is active.

Publication


Featured researches published by Qifeng Bai.


Molecular Cancer Therapeutics | 2014

TPCA-1 Is a Direct Dual Inhibitor of STAT3 and NF-κB and Regresses Mutant EGFR-Associated Human Non–Small Cell Lung Cancers

Jing Nan; Yuping Du; Xing Chen; Qifeng Bai; Yuxin Wang; Xinxin Zhang; Ning Zhu; Jing Zhang; Jianwen Hou; Qin Wang; Jinbo Yang

Epidermal growth factor receptor (EGFR) is a clinical therapeutic target to treat a subset of non–small cell lung cancer (NSCLC) harboring EGFR mutants. However, some patients with a similar kind of EGFR mutation show intrinsic resistance to tyrosine kinase inhibitors (TKI). It indicates that other key molecules are involved in the survival of these cancer cells. We showed here that 2-[(aminocarbonyl)amino]-5 -(4-fluorophenyl)-3- thiophenecarboxamide (TPCA-1), a previously reported inhibitor of IκB kinases (IKK), blocked STAT3 recruitment to upstream kinases by docking into SH2 domain of STAT3 and attenuated STAT3 activity induced by cytokines and cytoplasmic tyrosine kinases. TPCA-1 is an effective inhibitor of STAT3 phosphorylation, DNA binding, and transactivation in vivo. It selectively repressed proliferation of NSCLC cells with constitutive STAT3 activation. In addition, using pharmacologic and genetic approaches, we found that both NF-κB and STAT3 could regulate the transcripts of interleukin (IL)-6 and COX-2 in NSCLC harboring EGFR mutations. Moreover, gefitinib treatment only did not efficiently suppress NF-κB and STAT3 activity. In contrast, we found that treatment with TKIs increased phosho-STAT3 level in target cells. Inhibiting EGFR, STAT3, and NF-κB by combination of TKIs with TPCA-1 showed increased sensitivity and enhanced apoptosis induced by gefitinib. Collectively, in this work, we identified TPCA-1 as a direct dual inhibitor for both IKKs and STAT3, whereas treatment targeting EGFR only could not sufficiently repress NF-κB and STAT3 pathways for lung cancers harboring mutant EGFR. Therefore, synergistic treatment of TPCA-1 with TKIs has potential to be a more effective strategy for cancers. Mol Cancer Ther; 13(3); 617–29. ©2014 AACR.


Molecular BioSystems | 2014

Exploration of the antagonist CP-376395 escape pathway for the corticotropin-releasing factor receptor 1 by random acceleration molecular dynamics simulations.

Qifeng Bai; Danfeng Shi; Yang Zhang; Huanxiang Liu; Xiaojun Yao

Corticotropin-releasing factor receptor 1 (CRF1R), a member of class B G-protein-coupled receptors (GPCRs), plays an important role in the treatment of osteoporosis, diabetes, depression, migraine and anxiety. To explore the escape pathway of the antagonist CP-376395 in the binding pocket of CRF1R, molecular dynamics (MD) simulations, dynamical network analysis, random acceleration molecular dynamics (RAMD) simulations and adaptive biasing force (ABF) calculations were performed on the crystal structure of CRF1R in complex with CP-376395. The results of dynamical network analysis show that TM7 of CRF1R has the strongest edges during MD simulation. The bent part of TM7 forms a V-shape pocket with Gly356(7.50). Asn283(5.50) has high hydrogen bond occupancy during 100 ns MD simulations and is the key interaction residue with the antagonist in the binding pocket of CRF1R. RAMD simulation has identified three possible pathways (PW1, PW2 and PW3) for CP-376395 to escape from the binding pocket of CRF1R. The PW3 pathway was proved to be the most likely escape pathway for CP-376395. The free energy along the PW3 pathway was calculated by using ABF simulations. Two energy barriers were found along the reaction coordinates. Residues Leu323(6.49), Asn283(5.50) and Met206(3.47) contribute to the steric hindrance for the first energy barrier. Residues His199(3.40) and Gln355(7.49) contribute to the second energy barrier through the hydrogen bonding interaction between CP-376395 and CRF1R. The results of our study can not only provide useful information to understand the interaction mechanism between CP-376395 and CRF1R, but also provide the details about the possible escape pathway and the free energy profile of CP-376395 in the pocket of CRF1R.


Biochimica et Biophysica Acta | 2014

Molecular modeling study on the dynamical structural features of human smoothened receptor and binding mechanism of antagonist LY2940680 by metadynamics simulation and free energy calculation

Qifeng Bai; Yulin Shen; Nengzhi Jin; Huanxiang Liu; Xiaojun Yao

BACKGROUND The smoothened (SMO) receptor, one of the Class F G protein coupled receptors (GPCRs), is an essential component of the canonical hedgehog signaling pathway which plays a key role in the regulation of embryonic development in animals. The function of the SMO receptor can be modulated by small-molecule agonists and antagonists, some of which are potential antitumour agents. Understanding the binding mode of an antagonist in the SMO receptor is crucial for the rational design of new antitumour agents. METHODS Molecular dynamics (MD) simulation and dynamical network analysis are used to study the dynamical structural features of SMO receptor. Metadynamics simulation and free energy calculation are employed to explore the binding mechanism between the antagonist and SMO receptor. RESULTS The MD simulation results and dynamical network analysis show that the conserved KTXXXW motif in helix VIII has strong interaction with helix I. The α-helical extension of transmembrane 6 (TM6) is detected as part of the ligand-binding pocket and dissociation pathway of the antagonist. The metadynamics simulation results illustrate the binding mechanism of the antagonist in the pocket of SMO receptor, and free energy calculation shows the antagonist needs to overcome about 38kcal/mol of energy barrier to leave the binding pocket of SMO receptor. CONCLUSIONS The unusually long TM6 plays an important role on the binding behavior of the antagonist in the pocket of SMO receptor. GENERAL SIGNIFICANCE The results can not only profile the binding mechanism between the antagonist and Class F GPCRs, but also supply the useful information for the rational design of a more potential small molecule antagonist bound to SMO receptor.


PLOS ONE | 2015

Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations

Yuzhen Niu; Dabo Pan; Danfeng Shi; Qifeng Bai; Huanxiang Liu; Xiaojun Yao

As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1) protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S)-crizotinib against MTH1 is about 20 times over that of (R)-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S)-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Adaptive biasing force (ABF) methodologies is much lower than that of (R)-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S)-crizotinib and (R)-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S)-crizotinib to MTH1. The adaptive biasing force (ABF) method was further employed to elucidate the unbinding process of (S)-crizotinib and (R)-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S)-crizotinib from the binding pocket is different from (R)-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.


PLOS ONE | 2011

Modeling a new water channel that allows SET9 to dimethylate p53.

Qifeng Bai; Yulin Shen; Xiaojun Yao; Fang Wang; Yuping Du; Qin Wang; Nengzhi Jin; Jun Hai; Tiejun Hu; Jinbo Yang

SET9, a protein lysine methyltransferase, has been thought to be capable of transferring only one methyl group to target lysine residues. However, some reports have pointed out that SET9 can dimethylate Lys372 of p53 (p53-K372) and Lys4 of histone H3 (H3-K4). In order to understand how p53 can be dimethylated by SET9, we measured the radius of the channel that surrounds p53-K372, first on the basis of the crystal structure of SET9, and we show that the channel is not suitable for water movement. Second, molecular dynamic (MD) simulations were carried out for 204 ns on the crystal structure of SET9. The results show that water leaves the active site of SET9 through a new channel, which is made of G292, A295, Y305 and Y335. In addition, the results of molecular docking and MD simulations indicate that the new water channel continues to remain open when S-adenosyl-L-methionine (AdoMet) or S-adenosyl-L-homocysteine (AdoHcy) is bound to SET9. The changes in the radii of these two channels were measured in the equilibrium phase at the constant temperature of 300 K. The results indicate that the first channel still does not allow water to get into or out of the active site, but the new channel is large enough to allow this water to circulate. Our results indicate that water can be removed from the active site, an essential process for allowing the dimethylation reaction to occur.


PLOS ONE | 2014

Structural Diversity and Initial Oligomerization of PrP106–126 Studied by Replica-Exchange and Conventional Molecular Dynamics Simulations

Lulu Ning; Jingjing Guo; Qifeng Bai; Nengzhi Jin; Huanxiang Liu; Xiaojun Yao

Prion diseases are marked by cerebral accumulation of the abnormal isoform of the prion protein. A fragment of prion protein composed of residues 106–126 (PrP106–126) exhibits similar properties to full length prion and plays a key role in the conformational conversion from cellular prion to its pathogenic pattern. Soluble oligomers of PrP106–126 have been proposed to be responsible for neurotoxicity. However, the monomeric conformational space and initial oligomerization of PrP106–126 are still obscure, which are very important for understanding the conformational conversion of PrP106–126. In this study, replica exchange molecular dynamics simulations were performed to investigate monomeric and dimeric states of PrP106–126 in implicit solvent. The structural diversity of PrP106–126 was observed and this peptide did not acquire stable structure. The dimeric PrP106–126 also displayed structural diversity and hydrophobic interaction drove the dimerization. To further study initial oligomerization of PrP106–126, 1 µs conventional molecular dynamics simulations of trimer and tetramer formation were carried out in implicit solvent. We have observed the spontaneous formation of several basic oligomers and stable oligomers with high β-sheet contents were sampled in the simulations of trimer and tetramer formation. The β-hairpin formed in hydrophobic tail of PrP106–126 with residues 118–120 in turn may stabilize these oligomers and seed the formation oligomers. This study can provide insight into the detailed information about the structure of PrP106–126 and the dynamics of aggregation of monomeric PrP106–126 into oligomers in atomic level.


PLOS ONE | 2013

Computational Study on the Different Ligands Induced Conformation Change of β2 Adrenergic Receptor-Gs Protein Complex

Qifeng Bai; Yang Zhang; Yihe Ban; Huanxiang Liu; Xiaojun Yao

β2 adrenergic receptor (β2AR) regulated many key physiological processes by activation of a heterotrimeric GTP binding protein (Gs protein). This process could be modulated by different types of ligands. But the details about this modulation process were still not depicted. Here, we performed molecular dynamics (MD) simulations on the structures of β2AR-Gs protein in complex with different types of ligands. The simulation results demonstrated that the agonist BI-167107 could form hydrogen bonds with Ser2035.42, Ser2075.46 and Asn2936.55 more than the inverse agonist ICI 118,551. The different binding modes of ligands further affected the conformation of β2AR. The energy landscape profiled the energy contour map of the stable and dissociated conformation of Gαs and Gβγ when different types of ligands bound to β2AR. It also showed the minimum energy pathway about the conformational change of Gαs and Gβγ along the reaction coordinates. By using interactive essential dynamics analysis, we found that Gαs and Gβγ domain of Gs protein had the tendency to separate when the inverse agonist ICI 118,551 bound to β2AR. The α5-helix had a relatively quick movement with respect to transmembrane segments of β2AR when the inverse agonist ICI 118,551 bound to β2AR. Besides, the analysis of the centroid distance of Gαs and Gβγ showed that the Gαs was separated from Gβγ during the MD simulations. Our results not only could provide details about the different types of ligands that induced conformational change of β2AR and Gs protein, but also supplied more information for different efficacies of drug design of β2AR.


Proteins | 2018

Molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis on selectivity difference between FKBP51 and FKBP52: Insight into the molecular mechanism of isoform selectivity

Danfeng Shi; Qifeng Bai; Shuangyan Zhou; Xuewei Liu; Huanxiang Liu; Xiaojun Yao

As co‐chaperones of the 90‐kDa heat shock protein(HSP90), FK506 binding protein 51 (FKBP51) and FK506 binding protein 52 (FKBP52) modulate the maturation of steroid hormone receptor through their specific FK1 domains (FKBP12‐like domain 1). The inhibitors targeting FK1 domains are potential therapies for endocrine‐related physiological disorders. However, the structural conservation of the FK1 domains between FKBP51 and FKBP52 make it difficult to obtain satisfactory selectivity in FK506‐based drug design. Fortunately, a series of iFit ligands synthesized by Hausch et al exhibited excellent selectivity for FKBP51, providing new opportunity for design selective inhibitors. We performed molecular dynamics simulation, binding free energy calculation and unbinding pathway analysis to reveal selective mechanism for the inhibitor iFit4 binding with FKBP51 and FKBP52. The conformational stability evaluation of the “Phe67‐in” and “Phe67‐out” states implies that FKBP51 and FKBP52 have different preferences for “Phe67‐in” and “Phe67‐out” states, which we suggest as the determinant factor for the selectivity for FKBP51. The binding free energy calculations demonstrate that nonpolar interaction is favorable for the inhibitors binding, while the polar interaction and entropy contribution are adverse for the inhibitors binding. According to the results from binding free energy decomposition, the electrostatic difference of residue 85 causes the most significant thermodynamics effects on the binding of iFit4 to FKBP51 and FKBP52. Furthermore, the importance of substructure units on iFit4 were further evaluated by unbinding pathway analysis and residue‐residue contact analysis between iFit4 and the proteins. The results will provide new clues for the design of selective inhibitors for FKBP51.


PLOS ONE | 2014

Search for β2 adrenergic receptor ligands by virtual screening via grid computing and investigation of binding modes by docking and molecular dynamics simulations.

Qifeng Bai; Yonghua Shao; Dabo Pan; Yang Zhang; Huanxiang Liu; Xiaojun Yao

We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD) simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR) from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551). The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com.


PLOS ONE | 2015

Gelsolin-Like Domain 3 Plays Vital Roles in Regulating the Activities of the Lily Villin/Gelsolin/Fragmin Superfamily

Dong Qian; Qiong Nan; Yueming Yang; Hui Li; Yuelong Zhou; Jingen Zhu; Qifeng Bai; Pan Zhang; Lizhe An; Yun Xiang

The villin/gelsolin/fragmin superfamily is a major group of Ca2+-dependent actin-binding proteins (ABPs) involved in various cellular processes. Members of this superfamily typically possess three or six tandem gelsolin-like (G) domains, and each domain plays a distinct role in actin filament dynamics. Although the activities of most G domains have been characterized, the biochemical function of the G3 domain remains poorly understood. In this study, we carefully compared the detailed biochemical activities of ABP29 (a new member of this family that contains the G1-G2 domains of lily ABP135) and ABP135G1-G3 (which contains the G1-G3 domains of lily ABP135). In the presence of high Ca2+ levels in vitro (200 and 10 μM), ABP135G1-G3 exhibited greater actin severing and/or depolymerization and nucleating activities than ABP29, and these proteins had similar actin capping activities. However, in the presence of low levels of Ca2+ (41 nM), ABP135G1-G3 had a weaker capping activity than ABP29. In addition, ABP29 inhibited F-actin depolymerization, as shown by dilution-mediated depolymerization assay, differing from the typical superfamily proteins. In contrast, ABP135G1-G3 accelerated F-actin depolymerization. All of these results demonstrate that the G3 domain plays specific roles in regulating the activities of the lily villin/gelsolin/fragmin superfamily proteins.

Collaboration


Dive into the Qifeng Bai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge