Qifeng Dang
Ocean University of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qifeng Dang.
Journal of Food Science | 2010
Qifeng Dang; Jing Quan Yan; Yan Li; Xiaojie Cheng; Cheng Sheng Liu; Xi Guang Chen
In this article, chitosan acetate (CA) was prepared by the method of solid-liquid reaction. CA was a stable faint yellow powder with water solubility. CA kept the same backbone in the chemical structure as the raw material of chitosan, and it also had the similar antibacterial properties with chitosan. CA could form a coating film on the outside surface of the sweet cherries, could effectively retard the loss of the water, titratable acidity, and ascorbic acid of sweet cherries, and could induce a significant increase in the peroxidase and catalase activities in the fruit. The CA coating could also increase the ratio of the total soluble solids and titratable acidity in the fruit. The application of CA effectively maintained quality attributes and extended postharvest life of the sweet cherries. The results revealed that the CA salts had potential application in active edible coating materials in the storage of fresh fruit.
International Journal of Biological Macromolecules | 2012
Jing Li; Ming Kong; Xiaojie Cheng; Qifeng Dang; Xuan Zhou; Ya Nan Wei; Xi Guang Chen
Chitosan grafted poly(lactic acid) (CS-g-PLA) copolymer was synthesized and characterized by FT-IR and elemental analysis. The degree of poly(lactic acid) substitution on chitosan was 1.90 ± 0.04%. The critical aggregation concentration of CS-g-PLA in distilled water was 0.17 mg/ml. Three methods of preparing CS-g-PLA nanoparticles (diafiltration method, ultrasonication method and diafiltration combined with ultrasonication method) were investigated and their effect was compared. Of the three methods, diafiltration combined with ultrasonication method produced nanoparticles with optimal property in terms of size and morphology, with size ranging from 133 to 352 nm and zeta potential from 36 to 43 mV. Also, the hemolytic activity and cytotoxicity of the CS-g-PLA based nanoparticles was tested, and results showed low hemolysis rate (<5%) and no significant cytotoxicity effect of these nanoparticles.
Carbohydrate Polymers | 2012
Ya Liu; Hui Di Zang; Ming Kong; Fang Kui Ma; Qifeng Dang; Xiaojie Cheng; Qiu Xia Ji; Xi Guang Chen
Oleoyl-carboxymethy-chitosan (OCMCS) nanoparticles based on chitosan with various molecular weights were prepared using coacervation process, which demonstrated particle size of 150-350 nm, zeta potential of 10-20 mV, and high encapsulation efficiency of fluorescein isothiocyanate dextran (FD4). OCMCS nanoparticles were found to be adsorbed onto the excised carp intestinal mucosa, the extent of adsorption increased with increasing chitosan molecular weight. In comparison to FD4 solution, OCMCS nanoparticles promoted FD4 transport through excised carp intestinal mucosa by 3.26-6.52 folds, which were observed via fluorescence microscope. The OCMCS nanoparticulate systems that interacted with the Caco-2 cells decreased the transepithelial electric resistance (TEER) and induced increasing the apparent permeability coefficient (Papp) of FD4 by 3.61-6.32 folds. Cytotoxicity studies in Caco-2 monolayers verified the safety of the delivery system. The improvement of mucoadhesive ability and permeability enable the OCMCS nanosystems suitable carriers for the intestinal absorption of protein drugs.
Carbohydrate Polymers | 2017
Zhenzhen Yu; Qifeng Dang; Cheng Sheng Liu; Dongsu Cha; Haifeng Zhang; Wenjing Zhu; Qianqian Zhang; Bing Fan
A novel adsorbent, composed of poly(maleic acid)-grafted cross-linked chitosan microspheres (PMACCMs), was prepared via cross-linking with glutaraldehyde and modification by grafting maleic acid. FTIR, zeta potential, elemental analysis, 13C NMR, DTG, laser particle size analysis, SEM, and BET methods were applied to characterize PMACCMs, exhibiting a successful fabrication, good thermostability, and well-defined surface microstructure beneficial to Cd(II) adsorption. The effects of pH, contact time, and initial concentration on Cd(II) adsorption were also investigated, and the maximum adsorption capacity was 39.2mgg-1, indicating a great improvement as compared with that (14.5mgg-1) of cross-linked chitosan microspheres. The experimental data were well fitted with pseudo-second-order kinetic and Langmuir isotherm models. Five-cycle reusability tests demonstrated PMACCMs could be repeatedly used with a small adsorption capacity loss (<15%). Additionally, the adsorption mechanism was proposed. All the results confirmed that PMACCMs, which presented outstanding adsorption capability and reusability, could be a good candidate for wastewater purification.
Carbohydrate Polymers | 2016
Feilong Yan; Qifeng Dang; Cheng Sheng Liu; Jingquan Yan; Teng Wang; Bing Fan; Dongsu Cha; Xiaoli Li; Shengnan Liang; Zhenzhen Zhang
A novel chitosan derivative, 3,6-O-[N-(2-aminoethyl)-acetamide-yl]-chitosan (AACS), was successfully prepared to improve water solubility and antibacterial activity of chitosan. AACS had good antibacterial activity, with minimum inhibitory concentrations of 0.25mg/mL, against Escherichia coli and Staphylococcus aureus. Cell membrane integrity, electric conductivity and NPN uptake tests showed that AACS caused quickly increasing the release of intracellular nucleic acids, the uptake of NPN, and the electric conductivity by damaging membrane integrity. On the other hand, hydrophobicity, cell viability and SDS-PAGE experiments indicated that AACS was able to reduce the surface hydrophobicity, the cell viability and the intracellular proteins through increasing membrane permeability. SEM observation further confirmed that AACS could kill bacteria via disrupting their membranes. All results above verified that AACS mainly exerted antibacterial activity by a membrane damage mechanism, and it was expected to be a new food preservative.
Carbohydrate Polymers | 2016
Qifeng Dang; Cheng Sheng Liu; Yujie Wang; Jingquan Yan; Huiqin Wan; Bing Fan
Injectable thermosensitive hydrogels have widely been studied as drug delivery systems for their minimally invasive administration and localized drug release. However, burst drug release limits clinical applications of such hydrogels. A double-component injectable formulation (microspheres-loaded hydrogel, CMs-CS-HG) was thus fabricated to eliminate the limitation. Gelation temperature, gelation time, complex viscosity and syringeability tests for CMs-CS-HG demonstrated excellent injectability. After injection, the drug-loaded chitosan-based microspheres (CMs) were localized within the hydrogel, leading to localized drug release. Moreover, CMs-CS-HG had good hemocompatibility and histocompatibility, and had non-genotoxicity and non-cytotoxicity to Kunming mice. In addition, both in vitro and in vivo methotrexate (MTX) releasing efficiencies were evaluated, demonstrating long-term sustained MTX release from MTX-loaded CMs-CS-HG. These results showed the double-component CMs-CS-HG not only maintained good injectability and biocompatibility but also prolonged drug-releasing time in comparison with the single-component CS-HG or CMs, suggesting that CMs-CS-HG may be a promising drug delivery system.
ACS Applied Materials & Interfaces | 2017
Haifeng Zhang; Qifeng Dang; Cheng Sheng Liu; Dongsu Cha; Zhenzhen Yu; Wenjing Zhu; Bing Fan
A novel adsorbent, CS-MA-DETA microspheres, for uptake of heavy metal ions from aqueous solutions was first fabricated via two-step grafting methyl acrylate (MA) and diethylenetriamine (DETA) onto chitosan (CS) microsphere surface in the absence of cross-linkers. CS-MA-DETA microspheres of 3.04 μm in mean diameter were of uniformly wrinkle-like topography sketched out by SEM, whose surface after decoration by MA and DETA was stable and beneficial to metal ion capture. Its chemical composition, microstructure, and thermal property were characterized by elemental analysis, FTIR, XRD, BET, and TGA techniques, and the achieved quantitative results mainly included C/N ratio (4.76), crystallinity (31.20%, 19.75% of CS), specific surface area (27.806 m2 g-1), pore diameter (3.452 nm), and mass loss at the first stage (3%, around 10% of CS), which indicated a successful synthesis, well-defined structure, and good thermostability. Adsorption tests of CS-MA-DETA microspheres were performed in Pb(II) and/or Cd(II) solution(s) at various pH values, contact time, and initial concentrations, exhibiting an excellent adsorption capability. Its maximum adsorption capacity calculated by Langmuir model was 239.2 mg Pb(II)/g, or 201.6 mg Cd(II)/g, which was higher than those of most available CS-based adsorbents. Furthermore, several adsorption kinetic and isotherm models were employed to investigate its uptake behavior, implying that it was mainly a monolayer adsorption and chemisorption process. Five-cycle reusability tests demonstrated CS-MA-DETA microspheres could be repeatedly used without significant capacity loss (<10%). Additionally, several potential bonding modes and adsorption sites for both metal ions were also proposed. Overall, CS-MA-DETA microspheres with outstanding adsorption performance toward Pb(II) and/or Cd(II) might serve as a new absorbent for wastewater purification.
Carbohydrate Polymers | 2017
Qifeng Dang; Kai Liu; Zhenzhen Zhang; Cheng Sheng Liu; Xi Liu; Ying Xin; Xiaoyu Cheng; Tao Xu; Dongsu Cha; Bing Fan
Thermosensitive hydrogels whose physiological properties are similar to extracellular matrix have been extensively used for tissue regeneration. Polysaccharides and proteins, as biocompatible substrates similar to bio-macromolecules that could be recognized by human body, are two preferred polymers for fabrication of such hydrogels. A series of novel thermosensitive hydrogels (CS-ASC-HGs) containing chitosan (CS) and acid-soluble collagen (ASC) were thus prepared, in the presence of α, β-glycerophosphate, to mimic extracellular microenvironment for tissue regeneration. Rheological measurements demonstrated excellent thermosensitivity. FT-IR and SEM indicated CS-ASC-HGs possessed 3D porous architectures with fibrous ASC, and the molecular structure of ASC was well-maintained in hydrogels. Hemolysis, acute toxicity, and cytotoxicity tests suggested CS-ASC-HGs were of good biocompatibility. CS-ASC-HGs were able to support the survival and proliferation of L929 cells encapsulated in them. Moreover, CS-ASC-HGs had better pH stability and biocompatibility than pure CS hydrogel. These results suggested that CS-ASC-HGs could serve as promising scaffolds for tissue regeneration.
International Journal of Biological Macromolecules | 2015
Jinping Cai; Qifeng Dang; Cheng Sheng Liu; Teng Wang; Bing Fan; Jingquan Yan; Yanyan Xu
Chitosan-N-2-hydroxypropyl trimethyl ammonium chloride (QTS) was prepared by reaction of chitosan (CS) and glycidyl trimethylammonium chloride. Later, O-acetyl-chitosan-N-2-hydroxypropyl trimethyl ammonium chloride (AQTS) was synthesized by reaction of QTS with acetic acid in the presence of SOCl2. Both derivatives were characterized by FTIR, (1)H NMR, TGA, and XRD techniques. The degree of quaternization of QTS was 85.5%, and the degree of acetyl (DA) of AQTS was from 1.63 to 2.31. Compared with CS, the solubility of QTS and AQTS was improved at different levels, especially AQTS, it could be dissolved in many organic solvents, water, and aqueous solution. Notably, the solubility of AQTS in organic solvents increased as DA increased, while the solubility in water was reversed. The results of CS, QTS, and AQTS against Escherichia coli and Staphylococcus aureus showed that QTS and AQTS exhibited higher antibacterial activity than CS, and the antibacterial activity of AQTS decreased with increased DA. Moreover, the inhibition effect was AQTS1 (DA 1.63)>AQTS2 (DA 2.02)>QTS>AQTS3 (DA 2.31). On the basis of the results of the present study, it could be emphasized that hydrophobicity and positive charge density might strongly affect the antibacterial activity of quaternary ammonium chitosan derivatives.
Frontiers of Materials Science | 2014
Jing Li; Fang-Kui Ma; Qifeng Dang; Xing-Guo Liang; Xi Guang Chen
A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (− 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4–5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.