Qiguang Xie
Dartmouth College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qiguang Xie.
The Plant Cell | 2012
Xiaoxue Wang; Fangming Wu; Qiguang Xie; Huamei Wang; Ying Wang; Yanling Yue; Ondrej Gahura; Shuangshuang Ma; Lei Liu; Ying Cao; Yuling Jiao; Frantisek Puta; C. Robertson McClung; Xiaodong Xu; Ligeng Ma
This work shows that SKIP, a spliceosomal component, is critical for clock function in Arabidopsis thaliana. Loss of SKIP function impairs splicing on a genomic scale, and skip shows multiple defects in circadian clock function, including altered period, temperature compensation, and light sensitivity. Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level.
PLOS Pathogens | 2013
Chong Zhang; Qiguang Xie; Ryan G. Anderson; Gina Ng; Nicholas C. Seitz; Thomas A. Peterson; C. Robertson McClung; John M. McDowell; Dongdong Kong; June M. Kwak; Hua Lu
The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity.
Theoretical and Applied Genetics | 2011
Ping Lou; Qiguang Xie; Xiaodong Xu; Christine E. Edwards; Marcus T. Brock; Cynthia Weinig; C. R. McClung
The circadian clock serves to coordinate physiology and behavior with the diurnal cycles derived from the daily rotation of the earth. In plants, circadian rhythms contribute to growth and yield and, hence, to both agricultural productivity and evolutionary fitness. Arabidopsis thaliana has served as a tractable model species in which to dissect clock mechanism and function, but it now becomes important to define the extent to which the Arabidopsis model can be extrapolated to other species, including crops. Accordingly, we have extended our studies to the close Arabidopsis relative and crop species, Brassica rapa. We have investigated natural variation in circadian function and flowering time among multiple B. rapa collections. There is wide variation in clock function, based on a robust rhythm in cotyledon movement, within a collection of B. rapa accessions, wild populations and recombinant inbred lines (RILs) derived from a cross between parents from two distinct subspecies, a rapid cycling Chinese cabbage (ssp. pekinensis) and a Yellow Sarson oilseed (ssp. trilocularis). We further analyzed the RILs to identify the quantitative trait loci (QTL) responsible for this natural variation in clock period and temperature compensation, as well as for flowering time under different temperature and day length settings. Most clock and flowering-time QTL mapped to overlapping chromosomal loci. We have exploited micro-synteny between the Arabidopsis and B. rapa genomes to identify candidate genes for these QTL.
Plant Physiology | 2008
Patrice A. Salomé; Qiguang Xie; C. Robertson McClung
The circadian coordination of organismal biology with the local temporal environment has consequences for fitness that may become manifest early in development. We directly explored the development of the Arabidopsis (Arabidopsis thaliana) clock in germinating seedlings by monitoring expression of clock genes. Clock function is detected within 2 d of imbibition (hydration of the dried seed). Imbibition is sufficient to synchronize individuals in a population in the absence of entraining cycles of light-dark or temperature, although light-dark and temperature cycles accelerate the appearance of rhythmicity and improve synchrony among individuals. Oscillations seen during the first 2 d following imbibition are dependent on the clock genes LATE ELONGATED HYPOCOTYL, TIMING OF CAB EXPRESSION1, ZEITLUPE, GIGANTEA, PSEUDO-RESPONSE REGULATOR7 (PRR7), and PRR9, although later circadian oscillations develop in mutants defective in each of these genes. In contrast to circadian rhythmicity, which developed under all conditions, amplitude was the only circadian parameter that demonstrated a clear response to the light environment; clock amplitude is low in the dark and high in the light. A circadian clock entrainable by temperature cycles in germinating etiolated seedlings may synchronize the buried seedling with the local daily cycles before emergence from the soil and exposure to light.
The Plant Cell | 2014
Qiguang Xie; Peng Wang; Xian Liu; Li Yuan; Lingbao Wang; Chenguang Zhang; Yue Li; Hongya Xing; Liya Zhi; Zhiliang Yue; Chunsheng Zhao; C. Robertson McClung; Xiaodong Xu
The plant circadian clock consists of multiple interlocked transcriptional feedback loops. This work shows that LNK1 and LNK2, two NIGHT LIGHT–INDUCIBLE AND CLOCK-REGULATED genes, encode transcriptional coactivators that physically interact in the nucleus with multiple Myb transcription factors (CCA1, LHY, RVE4, and RVE8) and are necessary for full transcriptional induction of PRR5 and TOC1 by RVE8. Transcriptional feedback loops are central to the architecture of eukaryotic circadian clocks. Models of the Arabidopsis thaliana circadian clock have emphasized transcriptional repressors, but recently, Myb-like REVEILLE (RVE) transcription factors have been established as transcriptional activators of central clock components, including PSEUDO-RESPONSE REGULATOR5 (PRR5) and TIMING OF CAB EXPRESSION1 (TOC1). We show here that NIGHT LIGHT–INDUCIBLE AND CLOCK-REGULATED1 (LNK1) and LNK2, members of a small family of four LNK proteins, dynamically interact with morning-expressed oscillator components, including RVE4 and RVE8. Mutational disruption of LNK1 and LNK2 function prevents transcriptional activation of PRR5 by RVE8. The LNKs lack known DNA binding domains, yet LNK1 acts as a transcriptional activator in yeast and in planta. Chromatin immunoprecipitation shows that LNK1 is recruited to the PRR5 and TOC1 promoters in planta. We conclude that LNK1 is a transcriptional coactivator necessary for expression of the clock genes PRR5 and TOC1 through recruitment to their promoters via interaction with bona fide DNA binding proteins such as RVE4 and RVE8.
Nature Communications | 2014
Ulises Rosas; Yu Mei; Qiguang Xie; Joshua A. Banta; Royce W. Zhou; Gabriela Seufferheld; Silvia Gerard; Lucy Chou; Naeha Bhambhra; Jennifer Deane Parks; Jonathan M. Flowers; C. Robertson McClung; Yoshie Hanzawa; Michael D. Purugganan
The onset of flowering, the change from vegetative to reproductive development, is a major life history transition in flowering plants. Recent work suggests that mutations in cis-regulatory mutations should play critical roles in the evolution of this (as well as other) important adaptive traits, but thus far there has been little evidence that directly links regulatory mutations to evolutionary change at the species level. While several genes have previously been shown to affect natural variation in flowering time in Arabidopsis thaliana, most either show protein-coding changes and/or are found at low frequency (<5%). Here we identify and characterize natural variation in the cis-regulatory sequence in the transcription factor CONSTANS that underlies flowering time diversity in Arabidopsis. Mutation in this regulatory motif evolved recently and has spread to high frequency in Arabidopsis natural accessions, suggesting a role for these cis-regulatory changes in adaptive variation of flowering time.
Genetics | 2011
Christine E. Edwards; Brent E. Ewers; David G. Williams; Qiguang Xie; Ping Lou; Xiaodong Xu; C. Robertson McClung; Cynthia Weinig
Developmental mechanisms that enable perception of and response to the environment may enhance fitness. Ecophysiological traits typically vary depending on local conditions and contribute to resource acquisition and allocation, yet correlations may limit adaptive trait expression. Notably, photosynthesis and stomatal conductance vary diurnally, and the circadian clock, which is an internal estimate of time that anticipates diurnal light/dark cycles, may synchronize physiological behaviors with environmental conditions. Using recombinant inbred lines of Brassica rapa, we examined the quantitative-genetic architecture of ecophysiological and phenological traits and tested their association with the circadian clock. We also investigated how trait expression differed across treatments that simulated seasonal settings encountered by crops and naturalized populations. Many ecophysiological traits were correlated, and some correlations were consistent with expected biophysical constraints; for example, stomata jointly regulate photosynthesis and transpiration by affecting carbon dioxide and water vapor diffusion across leaf surfaces, and these traits were correlated. Interestingly, some genotypes had unusual combinations of ecophysiological traits, such as high photosynthesis in combination with low stomatal conductance or leaf nitrogen, and selection on these genotypes could provide a mechanism for crop improvement. At the genotypic and QTL level, circadian period was correlated with leaf nitrogen, instantaneous measures of photosynthesis, and stomatal conductance as well as with a long-term proxy (carbon isotope discrimination) for gas exchange, suggesting that gas exchange is partly regulated by the clock and thus synchronized with daily light cycles. The association between circadian rhythms and ecophysiological traits is relevant to crop improvement and adaptive evolution.
The Plant Cell | 2014
Danny W.K. Ng; Marisa E. Miller; Helen H. Yu; Tien-Yu Huang; Eun-Deok Kim; Jie Lu; Qiguang Xie; C. Robertson McClung; Z. Jeffrey Chen
This work describes a unique role for the RNA-directed DNA methylation pathway (mainly CHH methylation, where H = A, T, or C) in mediating the parent-of-origin effect on the expression of the circadian clock gene CCA1 in Arabidopsis intraspecific hybrids. Altered CCA1 expression amplitudes are associated with heterosis of embryo growth and biomass accumulation in the reciprocal hybrids. Hybrid plants and animals often show increased levels of growth and fitness, a phenomenon known as hybrid vigor or heterosis. Circadian rhythms optimize physiology and metabolism in plants and animals. In plant hybrids and polyploids, expression changes of the genes within the circadian regulatory network, such as CIRCADIAN CLOCK ASSOCIATED1 (CCA1), lead to heterosis. However, the relationship between allelic CCA1 expression and heterosis has remained elusive. Here, we show a parent-of-origin effect on altered circadian rhythms and heterosis in Arabidopsis thaliana F1 hybrids. This parent-of-origin effect on biomass heterosis correlates with altered CCA1 expression amplitudes, which are associated with methylation levels of CHH (where H = A, T, or C) sites in the promoter region. The direction of rhythmic expression and hybrid vigor is reversed in reciprocal F1 crosses involving mutants that are defective in the RNA-directed DNA methylation pathway (argonaute4 and nuclear RNA polymerase D1a) but not in the maintenance methylation pathway (methyltransferase1 and decrease in DNA methylation1). This parent-of-origin effect on circadian regulation and heterosis is established during early embryogenesis and maintained throughout growth and development.
Plant Physiology | 2010
Xiaodong Xu; Qiguang Xie; C. Robertson McClung
Circadian clocks provide temporal coordination by synchronizing internal biological processes with daily environmental cycles. To date, study of the plant circadian clock has emphasized Arabidopsis (Arabidopsis thaliana) as a model, but it is important to determine the extent to which this model applies in other species. Accordingly, we have investigated circadian clock function in Brassica rapa. In Arabidopsis, analysis of gene expression in transgenic plants in which luciferase activity is expressed from clock-regulated promoters has proven a useful tool, although technical challenges associated with the regeneration of transgenic plants has hindered the implementation of this powerful tool in B. rapa. The circadian clock is cell autonomous, and rhythmicity has been shown to persist in tissue culture from a number of species. We have established a transgenic B. rapa tissue culture system to allow the facile measurement and manipulation of clock function. We demonstrate circadian rhythms in the expression of several promoter:LUC reporters in explant-induced tissue culture of B. rapa. These rhythms are temperature compensated and are reset by light and temperature pulses. We observe a strong positive correlation in period length between the tissue culture rhythm in gene expression and the seedling rhythm in cotyledon movement, indicating that the circadian clock in B. rapa tissue culture provides a good model for the clock in planta.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Qiguang Xie; Ping Lou; Victor Hermand; Rashid Aman; Hee Jin Park; Dae-Jin Yun; Woe Yeon Kim; Matti J. Salmela; Brent E. Ewers; Cynthia Weinig; Sarah L. Khan; D. Loring P. Schaible; C. Robertson McClung
Significance The plant circadian clock affects many aspects of growth and development and influences both fitness in natural settings and performance in cultivated conditions. We show that GIGANTEA (GI) underlies a major quantitative trait locus for circadian period in Brassica rapa by fine-mapping, analysis of heterogeneous inbred lines, and transgenic rescue of an Arabidopsis gi-201 loss-of-function mutant. Analysis of chimeric and mutated B. rapa GI alleles identified the causal nucleotide polymorphism responsible for the allelic variation in circadian period, cold and salt tolerance, and red light inhibition of hypocotyl elongation. Allelic variation of GI and of clock genes in general offers targets for marker-assisted (molecular) breeding for enhanced stress tolerance and potentially for improved crop yield. GIGANTEA (GI) was originally identified by a late-flowering mutant in Arabidopsis, but subsequently has been shown to act in circadian period determination, light inhibition of hypocotyl elongation, and responses to multiple abiotic stresses, including tolerance to high salt and cold (freezing) temperature. Genetic mapping and analysis of families of heterogeneous inbred lines showed that natural variation in GI is responsible for a major quantitative trait locus in circadian period in Brassica rapa. We confirmed this conclusion by transgenic rescue of an Arabidopsis gi-201 loss of function mutant. The two B. rapa GI alleles each fully rescued the delayed flowering of Arabidopsis gi-201 but showed differential rescue of perturbations in red light inhibition of hypocotyl elongation and altered cold and salt tolerance. The B. rapa R500 GI allele, which failed to rescue the hypocotyl and abiotic stress phenotypes, disrupted circadian period determination in Arabidopsis. Analysis of chimeric B. rapa GI alleles identified the causal nucleotide polymorphism, which results in an amino acid substitution (S264A) between the two GI proteins. This polymorphism underlies variation in circadian period, cold and salt tolerance, and red light inhibition of hypocotyl elongation. Loss-of-function mutations of B. rapa GI confer delayed flowering, perturbed circadian rhythms in leaf movement, and increased freezing and increased salt tolerance, consistent with effects of similar mutations in Arabidopsis. Collectively, these data suggest that allelic variation of GI—and possibly of clock genes in general—offers an attractive target for molecular breeding for enhanced stress tolerance and potentially for improved crop yield.