Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qigui Niu is active.

Publication


Featured researches published by Qigui Niu.


Bioresource Technology | 2013

Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: stability, inhibition and recovery.

Qigui Niu; Wei Qiao; Hong Qiang; Toshimasa Hojo; Yu-You Li

A 12L mesophilic CSTR of chicken manure fermentation was operated for 400 days to evaluate process stability, inhibition occurrence and the recovery behavior suffering TAN concentrations from 2000 mg/L to 16,000 mg/L. A biogas production of 0.35-0.4 L/gVS(in) and a COD conversion of 68% were achieved when TAN concentration was lower than 5000 mg/L. Ammonia inhibition occurred due to the addition of NH4HCO3 to the substrate. The biogas and COD conversion decreased to 0.3 L/gVS(in) and 20% at TAN 10,000 mg/L and was totally suppressed at TAN 16,000 mg/L. Carbohydrate and protein conversion decreased by 33% and 77% after inhibition. After extreme inhibition, the reactor was diluted and washed, reducing TAN and FA to 4000 mg/L and 300 mg/L respectively, and the recovered biogas production was 0.5 L/gVS(in). The extended Monod model manifested the different sensitivities of hydrolysis, acidogenesis and methanogenesis to inhibition. VFA accumulation accompanied an increase in ammonia and exerted a toxic on microorganism.


Bioresource Technology | 2013

UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate.

Zhaoqian Jing; Yong Hu; Qigui Niu; Yuyu Liu; Yu-You Li; Xiaochang C. Wang

To find an appropriate method for sulfate-rich wastewater containing ethanol and acetate with COD/sulfate ratio of 1, a UASB reactor was operated for more than 180 days. The influences of HRT (hydraulic retention time) and OLR (organic loading rate) on organics and sulfate removal, gas production, and electrons utilization were investigated. The sludge activity and microorganism composition were also determined. The results indicated that this system removed more than 80% of COD and 30% of sulfate with HRT above 6h and OLR below 12.3 gCOD/L d. Further HRT decrease caused volatile fatty acids accumulation and performance deterioration. Except at HRT of 2h, COD and electron flow were mostly utilized by methane-producing archaea (MPA), and methane yield remained in the range of 0.18-0.24 LCH4/gCOD. Methane was mainly generated by Methanosaeta concilii GP6 with acetate as substrate, whereas sulfate was mainly reduced by incomplete-oxidizing Desulfovibrio species with ethanol as substrate.


Bioresource Technology | 2013

Microbial community shifts and biogas conversion computation during steady, inhibited and recovered stages of thermophilic methane fermentation on chicken manure with a wide variation of ammonia

Qigui Niu; Wei Qiao; Hong Qiang; Yu-You Li

The thermophilic methane fermentation of chicken manure (10% TS) was investigated within a wide range of ammonia. Microbiological analysis showed significant shifts in Archaeal and Bacterial proportions with VFA accmulation and CH4 formation before and after inhibition. VFA accumulated sharply with lower methane production, 0.29 L/g VS, than during the steady stage, 0.32 L/g VS. Biogas production almost ceased with the synergy inhibition of TAN (8000 mg/L) and VFA (25,000 mg/L). Hydrogenotrophic Methanothermobacter thermautotrophicus str. was the dominate archaea with 95% in the inhibition stage and 100% after 40 days recovery compared to 9.3% in the steady stage. Aceticlastic Methanosarcina was not encountered with coincided phenomenal of high VFA in the inhibition stage as well as recovery stage. Evaluation of the microbial diversity and functional bacteria indicated the dominate phylum of Firmicutes were 94.74% and 84.4% with and without inhibition. The microbial community shifted significantly with elevated ammonia concentration affecting the performance.


Bioresource Technology | 2013

Thermophilic anaerobic digestion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: System amendments and membrane performance

Wei Qiao; Kazuyuki Takayanagi; Mohammad Shofie; Qigui Niu; Han Qing Yu; Yu-You Li

Coffee grounds are deemed to be difficult for degradation by thermophilic anaerobic process. In this research, a 7 L AnMBR accepting coffee grounds was operated for 82 days and failed with pH dropping to 6.6. The deficiency of micronutrients in the reactor was identified. The system was recovered by supplying micronutrient, pH adjustment and influent ceasing for 22 days. In the subsequent 160 days of co-digestion experiment, waste activated sludge (15% in the mixture) was mixed into coffee grounds. The COD conversion efficiency of 67.4% was achieved under OLR of 11.1 kg-COD/m(3) d and HRT of 20 days. Tannins was identified affecting protein degradation by a batch experiment. Quantitative supplements of NH4HCO3 (0.12 g-N/g-TSin) were effective to maintain alkalinity and pH. The solid concentration in the AnMBR reached 75 g/L, but it did not significantly affect membrane filtration under a flux of 5.1 L/m(2) h. Soluble carbohydrate, lipid and protein were partially retained by the membrane.


Bioresource Technology | 2013

Long-term stability of thermophilic co-digestion submerged anaerobic membrane reactor encountering high organic loading rate, persistent propionate and detectable hydrogen in biogas.

Wei Qiao; Kazuyuki Takayanagi; Qigui Niu; Mohammad Shofie; Yu-You Li

The performance of thermophilic anaerobic co-digestion of coffee grounds and sludge using membrane reactor was investigated for 148 days, out of a total research duration of 263 days. The OLR was increased from 2.2 to 33.7 kg-COD/m(3)d and HRT was shortened from 70 to 7 days. A significant irreversible drop in pH confirmed the overload of reactor. Under a moderately high OLR of 23.6 kg-COD/m(3)d, and with HRT and influent total solids of 10 days and 150 g/L, respectively, the COD removal efficiency was 44.5%. Hydrogen in biogas was around 100-200 ppm, which resulted in the persistent propionate of 1.0-3.2g/L. The VFA consumed approximately 60% of the total alkalinity. NH4HCO3 was supplemented to maintain alkalinity. The stability of system relied on pH management under steady state. The 16SrDNA results showed that hydrogen-utilizing methanogens dominates the archaeal community. The propionate-oxidizing bacteria in bacterial community was insufficient.


Waste Management | 2015

Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience.

Qigui Niu; Yasuyuki Takemura; Kengo Kubota; Yu-You Li

While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000mg/L with free ammonia (FA) 2000mg/L compared to 16,000mg/L (FA1500mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gVSin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.


Chemosphere | 2015

Effect of influent COD/SO42− ratios on UASB treatment of a synthetic sulfate-containing wastewater

Yong Hu; Zhaoqian Jing; Yuta Sudo; Qigui Niu; Jingru Du; Jiang Wu; Yu-You Li

The effect of the chemical oxygen demand/sulfate (COD/SO4(2-)) ratio on the anaerobic treatment of synthetic chemical wastewater containing acetate, ethanol, and sulfate, was investigated using a UASB reactor. The experimental results show that at a COD/SO4(2-) ratio of 20 and a COD loading rate of 25.2gCODL(-1)d(-1), a COD removal of as high as 87.8% was maintained. At a COD/SO4(2-) ratio of 0.5 (sulfate concentration 6000mgL(-1)), however, the COD removal was 79.2% and the methane yield was 0.20LCH4gCOD(-1). The conversion of influent COD to methane dropped from 80.5% to 54.4% as the COD/SO4(2-) ratio decreased from 20 to 0.5. At all the COD/SO4(2-) ratios applied, over 79.4% of the total electron flow was utilized by methane-producing archaea (MPA), indicating that methane fermentation was the predominant reaction. The majority of the methane was produced by acetoclastic MPA at high COD/SO4(2-) ratios and both acetoclastic and hydrogenthrophic MPA at low COD/SO4(2-) ratios. Only at low COD/SO4(2-) ratios were SRB species such as Desulfovibrio found to play a key role in ethanol degradation, whereas all the SRB species were found to be incomplete oxidizers at both high and low COD/SO4(2-) ratios.


Bioresource Technology | 2016

Process stability and the recovery control associated with inhibition factors in a UASB-anammox reactor with a long-term operation.

Qigui Niu; Shilong He; Yanlong Zhang; Haiyuan Ma; Yuan Liu; Yu-You Li

A UASB-anammox reactor was operated for 900 days to study its process stability. The negative effects of free ammonia (FA) and free nitrous acid (FNA) were investigated over three separate inhibitions and recoveries. The IC10, IC50 and IC90 (inhibitory concentration/a 10%, 50% and 90% activity loss) of FNA and FA responding to the NH4(+)-N, NO2(-)-N and TN removal efficiency were evaluated. In the 1st inhibition, the average FNA-IC10 observed was 0.67 μg L(-1) and the FA-IC10 for TN removal was 4.85 mg L(-1). In the 2nd inhibition, an FNA-IC10 of 0.44μ g L(-1) and an FA-IC10 of 3.56 were found. In the 3rd inhibition, however, both the FNA-IC10 and FA-IC10 were found to have increased, with values of 0.50 μg L(-1) and 4.42 mg L(-1), respectively. A clear control region was established for multiple inhibitions and the recoveries, which followed (pH 7.5-8.5, FA below 10mg/100mg NH4(+)-N and an FNA below 0.005 mg/100 mg NO2(-)-N) for the purpose of optimizing the operation conditions of the UASB-anammox reactor.


Bioresource Technology | 2016

Long-term operation performance and variation of substrate tolerance ability in an anammox attached film expanded bed (AAFEB) reactor.

Yanlong Zhang; Qigui Niu; Haiyuan Ma; Shilong He; Kengo Kubota; Yu-You Li

An anammox attached film expanded bed (AAFEB) reactor was operated to study the long-term performance and the variation of substrate tolerance ability. The results indicated that the nitrogen loading potential (NLP) was significantly enhanced from 13.56gN·(L·d)(-)(1) to 20.95gN·(L·d)(-)(1) during the stable operation period. The inhibitory concentration of 10% (IC10) for free ammonia (FA), free nitrous acid (FNA) and SNinf (diluted substrate concentration) increased from 18mg/L, 12μgL(-1) and 370mgNL(-)(1) to 31mg/L, 19μgL(-1) and 670mgNL(-)(1), respectively. However, the substrate shock of 2500mgNL(-)(1) for 24h terribly weakened the treatment performance and substrate tolerance ability of the reactor. The results of batch tests indicated that the existence of lag phase made the AAFEB reactor more vulnerable to substrate variation. The SNinf was accurate to be used to monitor the reactor performance and should be maintained below 320mgNL(-)(1) to ensure the absolute stable operation.


Environmental Science and Pollution Research | 2016

Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems

Wei Li; Xiaoguang Xu; Megumu Fujibayashi; Qigui Niu; Nobuyuki Tanaka; Osamu Nishimura

To estimate the combined effects of elevated CO2 and temperature on microalgae, three typical and worldwide freshwater species, the green alga Scenedesmus acuminatus, the diatom Cyclotella meneghiniana, and the cyanobacterium Microcystis aeruginosa, as well as mixes of these three species were continuously cultured in controlled environment chambers with CO2 at 390 and 1000xa0ppm and temperatures of 20, 25, and 30xa0°C. CO2 and temperature significantly affected the production of microalgae. The cell productivity increased under elevated CO2 and temperature. Although the green alga dominated in the mixed culture within all CO2 and temperature conditions, rising temperature and CO2 intensified the competition of the cyanobacterium with other microalgae. CO2 affected the extracellular polymeric substances (EPS) characteristics of the green alga and the cyanobacterium. Elevated CO2 induced the generation of humic substances in the EPS fractions of the green alga, the cyanobacterium, and the mixed culture. The extracellular carbohydrates of the diatom and the extracellular proteins of the cyanobacterium increased with elevated CO2 and temperature, while the extracellular carbohydrates and proteins of the green alga and the mixes increased under elevated CO2 and temperature. There were synergistic effects of CO2 and temperature on the productivity and the EPS of microalgae. Climate change related CO2 and temperature increases will promote autochthonous organic carbon production in aquatic ecosystems and facilitate the proliferation of cyanobacteria, which potentially changes the carbon cycling and undermines the functioning of ecosystems.

Collaboration


Dive into the Qigui Niu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shilong He

China University of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Qiao

China University of Petroleum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaoqian Jing

Nanjing Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge