Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qihua Zhao is active.

Publication


Featured researches published by Qihua Zhao.


Archive | 2009

Active pixel imagers incorporating pixelâ level amplifiers based on polycrystallineâ silicon thinâ film transistors

Youcef El‐mohri; Larry E. Antonuk; Martin Koniczek; Qihua Zhao; Yixin Li; Robert A. Street; JengPing Lu

Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of approximately 10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill factors that are close to unity. In addition, the greater complexity of PSI-2 and PSI-3 pixel circuits, compared to that of PSI-1, has no observable effect on spatial resolution. Both PSI-2 and PSI-3 exhibit high levels of additive noise, resulting in no net improvement in the signal-to-noise performance of these early prototypes compared to conventional AMFPIs. However, faster readout rates, coupled with implementation of multiple sampling protocols allowed by the nondestructive nature of pixel readout, resulted in a significantly lower noise level of approximately 560 e (rms) for PSI-3.


Medical Physics | 2000

Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic x-ray applications.

Larry E. Antonuk; Kyung-Wook Jee; Youcef El-Mohri; Manat Maolinbay; Samer C. Nassif; Xiujiang Rong; Qihua Zhao; Jeffrey H. Siewerdsen; R. A. Street; K. S. Shah

A theoretical investigation of factors limiting the detective quantum efficiency (DQE) of active matrix flat-panel imagers (AMFPIs), and of methods to overcome these limitations, is reported. At the higher exposure levels associated with radiography, the present generation of AMFPIs is capable of exhibiting DQE performance equivalent, or superior, to that of existing film-screen and computed radiography systems. However, at exposure levels commonly encountered in fluoroscopy, AMFPIs exhibit significantly reduced DQE and this problem is accentuated at higher spatial frequencies. The problem applies both to AMFPIs that rely on indirect detection as well as direct detection of the incident radiation. This reduced performance derives from the relatively large magnitude of the square of the total additive noise compared to the system gain for existing AMFPIs. In order to circumvent these restrictions, a variety of strategies to decrease additive noise and enhance system gain are proposed. Additive noise could be reduced through improved preamplifier, pixel and array design, including the incorporation of compensation lines to sample external line noise. System gain could be enhanced through the use of continuous photodiodes, pixel amplifiers, or higher gain x-ray converters such as lead iodide. The feasibility of these and other strategies is discussed and potential improvements to DQE performance are quantified through a theoretical investigation of a variety of hypothetical 200 microm pitch designs. At low exposures, such improvements could greatly increase the magnitude of the low spatial frequency component of the DQE, rendering it practically independent of exposure while simultaneously reducing the falloff in DQE at higher spatial frequencies. Furthermore, such noise reduction and gain enhancement could lead to the development of AMFPIs with high DQE performance which are capable of providing both high resolution radiographic images, at approximately 100 microm pixel resolution, as well as variable resolution fluoroscopic images at 30 fps.


Medical Physics | 2001

Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat‐panel imager

Youcef El-Mohri; Kyung-Wook Jee; Larry E. Antonuk; Manat Maolinbay; Qihua Zhao

After years of aggressive development, active matrix flat-panel imagers (AMFPIs) have recently become commercially available for radiotherapy imaging. In this paper we report on a comprehensive evaluation of the signal and noise performance of a large-area prototype AMFPI specifically developed for this application. The imager is based on an array of 512 x 512 pixels incorporating amorphous silicon photodiodes and thin-film transistors offering a 26 x 26 cm2 active area at a pixel pitch of 508 microm. This indirect detection array was coupled to various x-ray converters consisting of a commercial phosphor screen (Lanex Fast B, Lanex Regular, or Lanex Fine) and a 1 mm thick copper plate. Performance of the imager in terms of measured sensitivity, modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) is reported at beam energies of 6 and 15 MV and at doses of 1 and 2 monitor units (MU). In addition, calculations of system performance (NPS, DQE) based on cascaded-system formalism were reported and compared to empirical results. In these calculations, the Swank factor and spatial energy distributions of secondary electrons within the converter were modeled by means of EGS4 Monte Carlo simulations. Measured MTFs of the system show a weak dependence on screen type (i.e., thickness), which is partially due to the spreading of secondary radiation. Measured DQE was found to be independent of dose for the Fast B screen, implying that the imager is input-quantum-limited at 1 MU, even at an extended source-to-detector distance of 200 cm. The maximum DQE obtained is around 1%--a limit imposed by the low detection efficiency of the converter. For thinner phosphor screens, the DQE is lower due to their lower detection efficiencies. Finally, for the Fast B screen, good agreement between calculated and measured DQE was observed.


Medical Physics | 2005

Segmented crystalline scintillators: An initial investigation of high quantum efficiency detectors for megavoltage x‐ray imaging

Amit Sawant; Larry E. Antonuk; Youcef El-Mohri; Qihua Zhao; Yixin Li; Zhong Su; Yi Wang; Jin Yamamoto; Hong Du; Ian A. Cunningham; Misha Klugerman; Kanai Shah

Electronic portal imaging devices (EPIDs) based on indirect detection, active matrix flat panel imagers (AMFPIs) have become the technology of choice for geometric verification of patient localization and dose delivery in external beam radiotherapy. However, current AMFPI EPIDs, which are based on powdered-phosphor screens, make use of only approximately 2% of the incident radiation, thus severely limiting their imaging performance as quantified by the detective quantum efficiency (DQE) (approximately 1%, compared to approximately 75% for kilovoltage AMFPIs). With the rapidly increasing adoption of image-guided techniques in virtually every aspect of radiotherapy, there exist strong incentives to develop high-DQE megavoltage x-ray imagers, capable of providing soft-tissue contrast at very low doses in megavoltage tomographic and, potentially, projection imaging. In this work we present a systematic theoretical and preliminary empirical evaluation of a promising, high-quantum-efficiency, megavoltage x-ray detector design based on a two-dimensional matrix of thick, optically isolated, crystalline scintillator elements. The detector is coupled with an indirect detection-based active matrix array, with the center-to-center spacing of the crystalline elements chosen to match the pitch of the underlying array pixels. Such a design enables the utilization of a significantly larger fraction of the incident radiation (up to 80% for a 6 MV beam), through increases in the thickness of the crystalline elements, without loss of spatial resolution due to the spread of optical photons. Radiation damage studies were performed on test samples of two candidate scintillator materials, CsI(Tl) and BGO, under conditions relevant to radiotherapy imaging. A detailed Monte Carlo-based study was performed in order to examine the signal, spatial spreading, and noise properties of the absorbed energy for several segmented detector configurations. Parameters studied included scintillator material, septal wall material, detector thickness, and the thickness of the septal walls. The results of the Monte Carlo simulations were used to estimate the upper limits of the modulation transfer function, noise power spectrum and the DQE for a select number of configurations. An exploratory, small-area prototype segmented detector was fabricated by infusing crystalline CsI(Tl) in a 2 mm thick tungsten matrix, and the signal response was measured under radiotherapy imaging conditions. Results from the radiation damage studies showed that both CsI(Tl) and BGO exhibited less than approximately 15% reduction in light output after 2500 cGy equivalent dose. The prototype CsI(Tl) segmented detector exhibited high uniformity, but a lower-than-expected magnitude of signal response. Finally, results from Monte Carlo studies strongly indicate that high scintillator-fill-factor configurations, incorporating high-density scintillator and septal wall materials, could achieve up to 50 times higher DQE compared to current AMFPI EPIDs.


Medical Physics | 2000

Additive noise properties of active matrix flat-panel imagers

Manat Maolinbay; Youcef El-Mohri; Larry E. Antonuk; Kyung-Wook Jee; Samer C. Nassif; Xiujiang Rong; Qihua Zhao

A detailed theoretical and empirical investigation of additive noise for indirect detection, active matrix flat-panel imagers (AMFPIs) has been performed. Such imagers comprise a pixelated array, incorporating photodiodes and thin-film transistors (TFTs), and an associated electronic acquisition system. A theoretical model of additive noise, defined as the noise of an imaging system in the absence of radiation, has been developed. This model is based upon an equivalent-noise-circuit representation of an AMFPI. The model contains a number of uncorrelated noise components which have been designated as pixel noise, data line thermal noise, externally coupled noise, preamplifier noise and digitization noise. Pixel noise is further divided into the following components: TFT thermal noise, shot and 1/f noise associated with the TFT and photodiode leakage currents, and TFT transient noise. Measurements of various additive noise components were carried out on a prototype imaging system based on a 508 microm pitch, 26 x 26 cm2 array. Other measurements were performed in the absence of the array, involving discrete components connected to the preamplifier input. Overall, model predictions of total additive noise as well as of pixel, preamplifier, and data line thermal noise components were in agreement with results of their measured counterparts. For the imaging system examined, the model predicts that pixel noise is dominated by shot and 1/f noise components of the photodiode and TFT at frame times above approximately 1 s. As frame time decreases, pixel noise is increasingly dominated by TFT thermal noise. Under these conditions, the reasonable degree of agreement observed between measurements and model predictions provides strong evidence that the role of TFT thermal noise has been properly incorporated into the model. Finally, the role of the resistance and capacitance of array data lines in the model was investigated using discrete component circuits at the preamplifier input. Measurements of preamplifier noise and data line thermal noise components as a function of input capacitance and resistance were found to be in reasonable agreement with model predictions.


Physics in Medicine and Biology | 2008

Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2.

Hong Du; Larry E. Antonuk; Youcef El-Mohri; Qihua Zhao; Zhong Su; Jin Yamamoto; Yi Wang

Active matrix, flat-panel x-ray imagers based on a-Si:H thin-film transistors offer many advantages and are widely utilized in medical imaging applications. Unfortunately, the detective quantum efficiency (DQE) of conventional flat-panel imagers incorporating scintillators or a-Se photoconductors is significantly limited by their relatively modest signal-to-noise ratio, particularly in applications involving low x-ray exposures or high spatial resolution. For this reason, polycrystalline HgI2 is of considerable interest by virtue of its low effective work function, high atomic number and the possibility of large-area deposition. In this study, a detailed investigation of the properties of prototype, flat-panel arrays coated with two forms of this high-gain photoconductor are reported. Encouragingly, high x-ray sensitivity, low dark current and spatial resolution close to the theoretical limits were observed from a number of prototypes. In addition, input-quantum-limited DQE performance was measured from one of the prototypes at relatively low exposures. However, high levels of charge trapping, lag and polarization, as well as pixel-to-pixel variations in x-ray sensitivity are of concern. While the results of the current study are promising, further development will be required to realize prototypes exhibiting the characteristics necessary to allow practical implementation of this approach.


Medical Physics | 2003

System performance of a prototype flat-panel imager operated under mammographic conditions.

Kyung Wook Jee; Larry E. Antonuk; Youcef El-Mohri; Qihua Zhao

The results of an empirical and theoretical investigation of the performance of a high-resolution, active matrix flat-panel imager performed under mammographic conditions are reported. The imager is based upon a prototype, indirect detection active matrix array incorporating a discrete photodiode in each pixel and a pixel-to-pixel pitch of 97 microm. The investigation involved three imager configurations corresponding to the use of three different x-ray converters with the array. The converters were a conventional Gd2O2S-based mammographic phosphor screen (Min-R) and two structured CsI:Tl scintillators: one optimized for high spatial resolution (FOS-HR) and the other for high light output (FOS-HL). Detective quantum efficiency for mammographic exposures ranging from approximately 2 to approximately 40 mR at 26 kVp were determined for each imager configuration through measurements of x-ray sensitivity, modulation transfer function (MTF), and noise power spectrum (NPS). All configurations were found to provide significant presampling MTF at frequencies beyond the Nyquist frequency of the array, approximately 5.2 mm(-1) , consistent with the high spatial resolution of the converters. In addition, the effect of additive electronic noise on the NPS was found to be significantly larger for the configuration with lower system gain (FOS-HR) than for the configurations with higher gain (Min-R, FOS-HL). The maximum DQE values obtained with the CsI:Tl scintillators were considerably greater than those obtained with the Min-R screen due to the significantly lower Swank noise of the scintillators. Moreover, DQE performance was found to degrade with decreasing exposure, although this exposure-dependence was considerably reduced for the higher gain configurations. Theoretical calculations based on the cascaded systems model were found to be in generally good agreement with these empirically determined NPS and DQE values. In this study, we provide an example of how cascaded systems modeling can be used to identify factors limiting system performance and to examine trade-offs between factors toward the goal of maximizing performance.


Proceedings of SPIE - The International Society for Optical Engineering | 1998

A large-area, 97 μm pitch, indirect-detection, active matrix, flat-panel imager (AMFPI)

Larry E. Antonuk; Youcef El-Mohri; Adam Hall; Kyung Wook Jee; Manat Maolinbay; Samer C. Nassif; Xiujiang Rong; Jeffrey H. Siewerdsen; Qihua Zhao; Richard L. Weisfield

The development of the highest resolution, large-area, active- matrix, flat-panel, imager (AMFPI) thus far reported is described. This imager is based on a 97 micrometer pixel pitch array with each pixel comprising a single a-Si:H TFT coupled to a discrete a-Si:H n-i-p photodiode. While the initial configuration chosen for fabrication is a 2048 X 2048 pixel array, a larger monolithic array format of 3072 X 4096 pixels is also permitted by the design. When coupled to an overlying scintillator such as a phosphor screen or CsI:Tl, the array allows indirect detection of incident radiation. The array is operated in conjunction with a recently completed electronic acquisition system featuring asynchronous operation, a large addressing range, fast analog signal extraction and digitization, and 16-bit digitization. This imager, whose empirical characterization will be reported in a subsequent paper, was developed as an engineering prototype to allow investigation of the performance limits of the most aggressive array designs permitted by present active-matrix technology. The development of this new imager builds upon knowledge acquired from the iterative design, fabrication, and quantitative evaluation of earlier engineering prototypes based on a series of 127 micrometer pitch arrays. This paper summarizes the general program of research leading to this new device and puts this in the context of world-wide developments in indirect and direct detection AMFPI technology. Some limitations of present AMFPI technology are described, and possible solutions are discussed. Specifically, the incorporation of multiplexers based on poly-crystalline silicon circuitry into the array design, to facilitate very high resolution imagers, are proposed. In addition, strategies to significantly improve AMFPI performance at very low exposures, such as those commonly encountered in fluoroscopy, involving the reduction of additive noise (such as through lower preamplifier noise) and the enhancement of system gain (such as through the use of lead iodide) are discussed and initial calculations illustrating potential levels of performance are presented.


Physics in Medicine and Biology | 2005

Systematic investigation of the signal properties of polycrystalline HgI2 detectors under mammographic, radiographic, fluoroscopic and radiotherapy irradiation conditions.

Zhong Su; Larry E. Antonuk; Youcef El-Mohri; Larry Hu; Hong Du; Amit Sawant; Yixin Li; Yi Wang; Jin Yamamoto; Qihua Zhao

The signal properties of polycrystalline mercuric iodide (HgI2) film detectors, under irradiation conditions relevant to mammographic, radiographic, fluoroscopic and radiotherapy x-ray imaging, are reported. Each film detector consists of an approximately 230 to approximately 460 microm thick layer of HgI2 (fabricated through physical vapour deposition or a screen-print process) and a thin barrier layer, sandwiched between a pair of opposing electrode plates. The high atomic number, high density and low effective ionization energy, W(EFF), of HgI2 make it an attractive candidate for significantly improving the performance of active matrix, flat-panel imagers (AMFPIs) for several x-ray imaging applications. The temporal behaviour of current from the film detectors in the presence and in the absence of radiation was used to examine dark current levels, the lag and reciprocity of the signal response, x-ray sensitivity and W(EFF). The results are discussed in the context of present AMFPI performance. This study provides performance data for a wide range of potential medical x-ray imaging applications from a single set of detectors and represents the first investigation of the signal properties of polycrystalline mercuric iodide for the radiotherapy application.


Medical Physics | 2005

Segmented phosphors: MEMS-based high quantum efficiency detectors for megavoltage x-ray imaging.

Amit Sawant; Larry E. Antonuk; Youcef El-Mohri; Yixin Li; Zhong Su; Yi Wang; Jin Yamamoto; Qihua Zhao; Hong Du; Jurgen H. Daniel; R. A. Street

Current electronic portal imaging devices (EPIDs) based on active matrix flat panel imager (AMFPI) technology use a metal plate+phosphor screen combination for x-ray conversion. As a result, these devices face a severe trade-off between x-ray quantum efficiency (QE) and spatial resolution, thus, significantly limiting their imaging performance. In this work, we present a novel detector design for indirect detection-based AMFPI EPIDs that aims to circumvent this trade-off. The detectors were developed using micro-electro-mechanical system (MEMS)-based fabrication techniques and consist of a grid of up to approximately 2 mm tall, optically isolated cells of a photoresist material, SU-8. The cells are dimensionally matched to the pixels of the AMFPI array, and packed with a scintillating phosphor. In this paper, various design considerations for such detectors are examined. An empirical evaluation of three small-area (approximately 7 x 7 cm2) prototype detectors is performed in order to study the effects of two design parameters--cell height and phosphor packing density, both of which are important determinants of the imaging performance. Measurements of the x-ray sensitivity, modulation transfer function (MTF) and noise power spectrum (NPS) were performed under radiotherapy conditions (6 MV), and the detective quantum efficiency (DQE) was determined for each prototype SU-8 detector. In addition, theoretical calculations using Monte Carlo simulations were performed to determine the QE of each detector, as well as the inherent spatial resolution due to the spread of absorbed energy. The results of the present studies were compared with corresponding measurements published in an earlier study using a Lanex Fast-B phosphor screen coupled to an indirect detection array of the same design. The SU-8 detectors exhibit up to 3 times higher QE, while achieving spatial resolution comparable or superior to Lanex Fast-B. However, the DQE performance of these early prototypes is significantly lower than expected due to high levels of optical Swank noise. Consequently, the SU-8 detectors presently exhibit DQE values comparable to Lanex Fast-B at zero spatial frequency and significantly lower than Fast-B at higher frequencies. Finally, strategies for reducing Swank noise are discussed and theoretical calculations, based on the cascaded systems model, are presented in order to estimate the performance improvement that can be achieved through such noise reduction.

Collaboration


Dive into the Qihua Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Wang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Hong Du

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Yixin Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Amit Sawant

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhong Su

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge