Qilu Fang
Wenzhou Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qilu Fang.
European Journal of Medicinal Chemistry | 2014
Zhiguo Liu; Longguang Tang; Peng Zou; Yali Zhang; Zhe Wang; Qilu Fang; Lili Jiang; Gaozhi Chen; Zheng Xu; Huajie Zhang; Guang Liang
Curcumin has been shown to possess anti-inflammatory activities but has been limited for its low stability and poor bioavailability. We have previously reported four series of 5-carbon linker-containing mono-carbonyl analogs of curcumin (MACs). In continuation of our ongoing research, we designed and synthesized 33 novel allylated or prenylated MACs here, and evaluated their anti-inflammatory effects in RAW 264.7 macrophages. A majority of them effectively inhibited the LPS-induced expression of TNF-α and IL-6, especially IL-6. The preliminary SAR and quantitative SAR analysis were conducted. Compound 14q is the most potent analog among them, and exhibits significant protection against LPS-induced death in septic mice. Together, these data present a series of new analogs of curcumin as promising anti-inflammatory agents.
Biochimica et Biophysica Acta | 2015
Peng Zhong; Lianpin Wu; Yuanyuan Qian; Qilu Fang; Dandan Liang; Jingying Wang; Chunlai Zeng; Guang Liang
Increased oxidative stress and cardiac inflammation have been implicated in the pathogenesis of diabetic cardiomyopathy (DCM). We previously found that a novel chalcone derivative, L6H9, was able to reduce LPS-induced inflammatory response in macrophages. This study was designed to investigate its protective effects on DCM and the underlying mechanisms. H9C2 cells were cultured with DMEM containing 33 mmol/L of glucose in the presence or absence of L6H9. Pretreatment with L6H9 significantly reduced high glucose-induced inflammatory cytokine expression, ROS level increase, mitochondrial dysfunction, cell apoptosis, fibrosis, and hypertrophy in H9c2 cells, which may be mediated by NF-κB inhibition and Nrf2 activation. In mice with STZ-induced diabetes, oral administration of L6H9 at 20 mg/kg/day for 8 weeks significantly decreased the cardiac cytokine and ROS level, accompanied by decreasing cardiac apoptosis and hypertrophy, and, finally, improved histological abnormalities and fibrosis, without affecting the hyperglycemia. L6H9 also attenuated the diabetes-induced NF-κB activation and Nrf2 decrease in diabetic hearts. These results strongly suggest that L6H9 may have great therapeutic potential in the treatment of DCM via blockage of inflammation and oxidative stress. This study also provides a deeper understanding of the regulatory role of Nrf2 and NF-κB in DCM, indicating that they may be important therapeutic targets for diabetic complications.
Drug Design Development and Therapy | 2014
Yali Zhang; Chengguang Zhao; Wenfei He; Zhe Wang; Qilu Fang; Bing Xiao; Zhiguo Liu; Guang Liang; Shulin Yang
Sepsis is a systemic inflammatory response syndrome and is mainly caused by lipopolysaccharides (LPS) – a component of the cell walls of gram-negative bacteria, via toll-like receptor 4–mitogen-activated protein kinases/nuclear factor-kappa B-dependent proinflammatory signaling pathway. Here, we synthesized 26 asymmetric monocarbonyl analogs of curcumin and evaluated their anti-inflammatory activity by inhibiting the LPS-induced secretion of tumor necrosis factor-α and interleukin-6 in mouse RAW264.7 macrophages. Five active compounds (3a, 3c, 3d, 3j, and 3l) exhibited dose-dependent inhibition against the release of tumor necrosis factor-α and interleukin-6, and they also showed much higher chemical stability than curcumin in vitro. The anti-inflammatory activity of analogs 3a and 3c may be associated with their inhibition of the phosphorylation of extracellular signal-regulated kinase and the activation of nuclear factor-kappa B. In addition, 3c exhibited significant protection against LPS-induced septic death in vivo. These results indicate that asymmetrical monocarbonyl curcumin analogs may be utilized as candidates for the treatment of acute inflammatory diseases.
British Journal of Pharmacology | 2015
Xiaoou Shan; Gaozhi Chen; Lili Jiang; Zhe Wang; Qilu Fang; Xing Liu; Jingying Wang; Yali Zhang; Wencan Wu; Guang Liang
Myeloid differentiation 2 (MD‐2) recognizes LPS, which is required for TLR4 activation, and represents an attractive therapeutic target for severe inflammatory disorders. We previously found that a chalcone derivative, L6H21, could inhibit LPS‐induced overexpression of TNF‐α and IL‐6 in macrophages. Here, we performed a series of biochemical experiments to investigate whether L6H21 specifically targets MD‐2 and inhibits the interaction and signalling transduction of LPS‐TLR4/MD‐2.
Journal of Cellular and Molecular Medicine | 2014
Yong Pan; Yi Huang; Zhe Wang; Qilu Fang; Yusheng Sun; Chao Tong; Kesong Peng; Yangwei Wang; Lining Miao; Lu Cai; Yunjie Zhao; Guang Liang
A range of in vitro, experimental and clinical intervention studies have implicated an important role for hyperglycaemia‐induced activation of the renin‐angiotensin system (RAS) in the development and progression of diabetic nephropathy (DN). Blockade of RAS by angiotensin converting enzyme (ACE) inhibitors is an effective strategy in treating diabetic kidney diseases. However, few studies demonstrate the mechanism by which hyperglycaemia up‐regulates the expression of ACE gene. Our previous studies have identified a novel curcumin analogue, (2E,6E)‐2,6‐bis(2‐(trifluoromethyl)benzylidene)cyclohexanone (C66), which could inhibit the high glucose (HG)‐induced phosphorylation of mitogen‐activated protein kinases in mouse macrophages. In this study, we found that the renal protection of C66 in diabetic mice was associated with mitogen‐activated protein kinase (MAPK) inactivation and ACE/angiotensin II (Ang II) down‐regulation. Generally, MAPKs have been considered as a downstream signalling of Ang II and a mediator for Ang II‐induced pathophysiological actions. However, using C66 and specific inhibitors as small molecule probes, in vitro experiments demonstrate that the MAPK signalling pathway regulates ACE expression under HG stimulation, which contributes to renal Ang II activation and the development of DN. This study indicates that C66 is a potential candidate of DN therapeutic agents, and more importantly, that reduction in ACE expression by MAPKs inhibition seems to be an alternative strategy for the treatment of DN.
Toxicology and Applied Pharmacology | 2015
Qilu Fang; Leping Zhao; Yali Zhang; Zhaoyu Li; Yong Pan; Karvannan Kanchana; Jingying Wang; Chao Tong; Dan Li; Guang Liang
Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future.
Nature Communications | 2017
Yuanyuan Qian; Qilu Fang; Peng Zhong; Weixin Li; Lintao Wang; Weitao Fu; Yali Zhang; Zheng Xu; Xiaokun Li; Guang Liang
Obesity increases the risk for a number of diseases including cardiovascular diseases and type 2 diabetes. Excess saturated fatty acids (SFAs) in obesity play a significant role in cardiovascular diseases by activating innate immunity responses. However, the mechanisms by which SFAs activate the innate immune system are not fully known. Here we report that palmitic acid (PA), the most abundant circulating SFA, induces myocardial inflammatory injury through the Toll-like receptor 4 (TLR4) accessory protein MD2 in mouse and cell culture experimental models. Md2 knockout mice are protected against PA- and high-fat diet-induced myocardial injury. Studies of cell surface binding, cell-free protein–protein interactions and molecular docking simulations indicate that PA directly binds to MD2, supporting a mechanism by which PA activates TLR4 and downstream inflammatory responses. We conclude that PA is a crucial contributor to obesity-associated myocardial injury, which is likely regulated via its direct binding to MD2.
Scientific Reports | 2016
Weixin Li; Qilu Fang; Peng Zhong; Lingfeng Chen; Lintao Wang; Yali Zhang; Jun Wang; Xiaokun Li; Jingying Wang; Guang Liang
Obesity is often associated with increased risk of cardiovascular diseases. Previous studies suggest that epidermal growth factor receptor (EGFR) antagonism may be effective for the treatment of angiotensin II-induced cardiac hypertrophy and diabetic cardiomyopathy. This study was performed to demonstrate if EGFR plays a role in the pathogenesis of hyperlipidemia/obesity-related cardiac injuries. The in vivo studies using both wild type (WT) and apolipoprotein E (ApoE) knockout mice fed with high fat diet (HFD) showed the beneficial effects of small-molecule EGFR inhibitors, AG1478 and 542, against obesity-induced myocardial injury. Administration of AG1478 and 542 significantly reduced myocardial inflammation, fibrosis, apoptosis, and dysfunction in both two obese mouse models. In vitro, EGFR signaling was blocked by either siRNA silencing or small-molecule EGFR inhibitors in palmitic acid (PA)-stimulated cardiomyocytes. EGFR inhibition attenuated PA-induced inflammatory response and apoptosis in H9C2 cells. Furthermore, we found that PA-induced EGFR activation was mediated by the upstream TLR4 and c-Src. This study has confirmed the detrimental effect of EGFR activation in the pathogenesis of obesity-induced cardiac inflammatory injuries in experimental mice, and has demonstrated the TLR4/c-Src-mediated mechanisms for PA-induced EGFR activation. Our data suggest that EGFR may be a therapeutic target for obesity-related cardiovascular diseases.
Oncotarget | 2016
Qilu Fang; Chunpeng Zou; Peng Zhong; Feng Lin; Weixin Li; Lintao Wang; Yali Zhang; Chao Zheng; Xiaokun Li; Guang Liang
Previous studies have implicated inflammation, oxidative stress, and fibrosis as key factors in the development of obesity-induced kidney diseases. Epidermal growth factor receptor (EGFR) plays an important role in cancer development. Recently, the EGFR pathway has been increasingly implicated in chronic cardiovascular diseases via regulating inflammation and oxidative stress. However, it is unclear if EGFR is involved in obesity-related kidney injury. Using ApoE−/− and C57BL/6 mice models and two specific EGFR inhibitors, we investigated the potential effects of EGFR inhibition in the treatment of obesity-related nephropathy and found that EGFR inhibition alleviates renal inflammation, oxidative stress and fibrosis. In NRK-52E cells, we also elucidated the mechanism behind hyperlipidemia-induced EGFR activation. We observed that c-Src and EGFR forms a complex, and following PA stimulation, it is the successive phosphorylation, not formation, of the c-Src/EGFR complex that results in the subsequent cascade activation. Second, we found that TLR4 regulates the activation EGFR pathway mainly through the phosphorylation of the c-Src/EGFR complex. These results demonstrate the detrimental role of EGFR in the pathogenesis of obesity-related nephropathy, provide a new understanding of the mechanism behind hyperlipidemia/FFA-induced EGFR activation, and support the use of EGFR inhibitors in the treatment of obesity-induced kidney diseases.
Journal of Medicinal Chemistry | 2016
Gaozhi Chen; Yali Zhang; Xing Liu; Qilu Fang; Zhe Wang; Lili Fu; Zhiguo Liu; Yunjie Zhao; Xiaokun Li; Guang Liang
Acute inflammatory diseases, including acute lung injury and sepsis, remain the most common life-threatening illness in intensive care units worldwide. Cinnamamide has been incorporated in several synthetic compounds with therapeutic potentials including anti-inflammatory properties. However, the possible mechanism and direct molecular target of cinnamamides for their anti-inflammatory effects were rarely investigated. In this study, we synthesized a series of cinnamamides and evaluated their anti-inflammatory activities. The most active compound, 2i, was found to block LPS-induced MD2/TLR4 pro-inflammatory signaling activation in vitro and to attenuate LPS-caused sepsis and acute lung injury in vivo. Mechanistically, we demonstrated that 2i exerts its anti-inflammatory effects by directly targeting and binding MD2 in Arg90 and Tyr102 residues and inhibiting MD2/TLR4 complex formation. Taken together, this work presents a novel MD2 inhibitor, 2i, which has the potential to be developed as a candidate for the treatment of sepsis, and provides a new lead structure for the development of anti-inflammatory agents targeting MD2.