Qin-Chi Lu
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qin-Chi Lu.
Neuroscience Bulletin | 2013
Jian-Sheng Liu; Jingbo Li; Xin-Wei Gong; Hai-Qing Gong; Pu-Ming Zhang; Pei-Ji Liang; Qin-Chi Lu
The epileptic seizure is a dynamic process involving a rapid transition from normal activity to a state of hypersynchronous neuronal discharges. Here we investigated the network properties of epileptiform discharges in hippocampal slices in the presence of high K+ concentration (8.5 mmol/L) in the bath, and the effects of the anti-epileptic drug valproate (VPA) on epileptiform discharges, using a microelectrode array. We demonstrated that epileptiform discharges were predominantly initiated from the stratum pyramidale layer of CA3a-b and propagated bi-directionally to CA1 and CA3c. Disconnection of CA3 from CA1 abolished the discharges in CA1 without disrupting the initiation of discharges in CA3. Further pharmacological experiments showed that VPA at a clinically relevant concentration (100 μmol/L) suppressed the propagation speed but not the rate or duration of high-K+-induced discharges. Our findings suggest that pacemakers exist in the CA3a-b region for the generation of epileptiform discharges in the hippocampus. VPA reduces the conduction of such discharges in the network by reducing the propagation speed.
Neural Plasticity | 2014
Yong-Hua Li; Jia-Jia Li; Qin-Chi Lu; Hai-Qing Gong; Pei-Ji Liang; Pu-Ming Zhang
Studies have suggested that thalamus is involved in temporal lobe epilepsy, but the role of thalamus is still unclear. We obtained local filed potentials (LFPs) and single-unit activities from CA1 of hippocampus and parafascicular nucleus of thalamus during the development of epileptic seizures induced by pilocarpine in mice. Two measures, redundancy and directionality index, were used to analyze the electrophysiological characters of neuronal activities and the information flow between thalamus and hippocampus. We found that LFPs became more regular during the seizure in both hippocampus and thalamus, and in some cases LFPs showed a transient disorder at seizure onset. The variation tendency of the peak values of cross-correlation function between neurons matched the variation tendency of the redundancy of LFPs. The information tended to flow from thalamus to hippocampus during seizure initiation period no matter what the information flow direction was before the seizure. In some cases the information flow was symmetrically bidirectional, but none was found in which the information flowed from hippocampus to thalamus during the seizure initiation period. In addition, inactivation of thalamus by tetrodotoxin (TTX) resulted in a suppression of seizures. These results suggest that thalamus may play an important role in the initiation of epileptic seizures.
PLOS ONE | 2014
Xin-Wei Gong; Jingbo Li; Qin-Chi Lu; Pei-Ji Liang; Pu-Ming Zhang
Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures.
Neural Plasticity | 2014
Ye-Jun Shi; Xin-Wei Gong; Hai-Qing Gong; Pei-Ji Liang; Pu-Ming Zhang; Qin-Chi Lu
The hippocampus plays an important role in the genesis of mesial temporal lobe epilepsy, and the entorhinal cortex (EC) may affect the hippocampal network activity because of the heavy interconnection between them. However, the mechanism by which the EC affects the discharge patterns and the transmission mode of epileptiform discharges within the hippocampus needs further study. Here, multielectrode recording techniques were used to study the spatiotemporal characteristics of epileptiform discharges in adult mouse hippocampal slices and combined EC-hippocampal slices and determine whether and how the EC affects the hippocampal neuron discharge patterns. The results showed that low-Mg2+ artificial cerebrospinal fluid induced interictal discharges in hippocampal slices, whereas, in combined EC-hippocampal slices the discharge pattern was alternated between interictal and ictal discharges, and ictal discharges initiated in the EC and propagated to the hippocampus. The pharmacological effect of the antiepileptic drug valproate (VPA) was tested. VPA reversibly suppressed the frequency of interictal discharges but did not change the initiation site and propagation speed, and it completely blocked ictal discharges. Our results suggested that EC was necessary for the hippocampal ictal discharges, and ictal discharges were more sensitive than interictal discharges in response to VPA.
PLOS ONE | 2016
Jia-Jia Li; Yong-Hua Li; Hai-Qing Gong; Pei-Ji Liang; Pu-Ming Zhang; Qin-Chi Lu
The synchronization among the activities of neural populations in functional regions is one of the most important electrophysiological phenomena in epileptic brains. The spatiotemporal dynamics of phase synchronization was investigated to reveal the reciprocal interaction between different functional regions during epileptogenesis. Local field potentials (LFPs) were recorded simultaneously from the basolateral amygdala (BLA), the cornu ammonis 1 of hippocampus (CA1) and the mediodorsal nucleus of thalamus (MDT) in the mouse amygdala-kindling models during the development of epileptic seizures. The synchronization of LFPs was quantified between BLA, CA1 and MDT using phase-locking value (PLV). During amygdala kindling, behavioral changes (from stage 0 to stage 5) of mice were accompanied by after-discharges (ADs) of similar waveforms appearing almost simultaneously in CA1, MDT, as well as BLA. AD durations were positively related to the intensity of seizures. During seizures at stages 1~2, PLVs remained relatively low and increased dramatically shortly after the termination of the seizures; by contrast, for stages 3~5, PLVs remained a relatively low level during the initial period but increased dramatically before the seizure termination. And in the theta band, the degree of PLV enhancement was positively associated with seizure intensity. The results suggested that during epileptogenesis, the functional regions were kept desynchronized rather than hyper-synchronized during either the initial or the entire period of the seizures; so different dynamic patterns of phase synchronization may be involved in different periods of the epileptogenesis, and this might also reflect that during seizures at different stages, the mechanisms underlying the dynamics of phase synchronization were different.
Theoretical Biology and Medical Modelling | 2014
Hui Ren; Ye-Jun Shi; Qin-Chi Lu; Pei-Ji Liang; Pu-Ming Zhang
BackgroundTemporal lobe epilepsy (TLE) is the commonest type of epilepsy in adults, and the hippocampus is indicated to have a close relationship with TLE. Recent researches also indicate that the entorhinal cortex (EC) is involved in epilepsy. To explore the essential role that the EC may play in epilepsy, a computational model of the hippocampal CA3 region was built, which consisted of pyramidal cells and two types of interneurons. By changing the input signals from the EC, the effects of EC on epileptiform activities of the hippocampus were investigated. Additionally, recent studies have found that the antiepileptic drug valproate (VPA) can block ictal discharges but cannot block interictal discharges in vitro, and the mechanism under this phenomenon is still confusing. In our model, the effects of VPA on epileptiform activities were simulated and some mechanisms were explored.ResultsInterictal discharges were induced in the model without the input signals from the EC, whereas the model with the EC input produced ictal discharges when the EC input contained ictal discharges. The GABA-ergic connection strength was enhanced and the NMDA-ergic connection strength was reduced to simulate the effects of VPA, and the simulation results showed that the disappearance of ictal discharges in the model mainly due to the disappearance of ictal discharges in the input signals from the EC.ConclusionsSimulation results showed that ictal discharges in the EC were necessary for the hippocampus to generate ictal discharges, and VPA might block the ictal discharges in the EC, which led to the disappearance of ictal discharges in the hippocampus.
bioinformatics and biomedicine | 2016
Bo-Wen Liu; Jun-Wei Mao; Ye-Jun Shi; Qin-Chi Lu; Pei-Ji Liang; Pu-Ming Zhang
Epilepsy is growingly considered as a brain network disorder. In this study, epileptiform discharges were induced by low-Mg2+ in mouse entorhinal cortex-hippocampal slices, and recorded with a micro-electrode array. Dynamic effective network connectivity was constructed by calculating the time-variant partial directed coherence (tvPDC) of signals. We proposed a novel approach to track the state transitions of epileptic networks over time, and characterized the network topology by using graphical measures. We found that the hub nodes with high degrees in the network coincided with the epileptogenic zone in previous electrophysiological findings. Two consecutive states with distinct network topologies were identified during the ictal-like discharges. The small-worldness remained at a low level at the first state but increased significantly at the second state. Our results indicate the ability of tvPDC to capture the causal interaction between multi-channel signals important in indentifying the epileptogenetic zone. Moreover, the evolution of network states extends our knowledge of the network drivers for the initiation and maintenance of ical activity, and suggests the practical value of our network clustering approach.
Computational and Mathematical Methods in Medicine | 2016
Zhen Zhang; Jia-Jia Li; Qin-Chi Lu; Hai-Qing Gong; Pei-Ji Liang; Pu-Ming Zhang
The thalamus and hippocampus have been found both involved in the initiation, propagation, and termination of temporal lobe epilepsy. However, the interaction of these regions during seizures is not clear. The present study is to explore whether some regular patterns exist in their interaction during the termination of seizures. Multichannel in vivo recording techniques were used to record the neural activities from the cornu ammonis 1 (CA1) of hippocampus and mediodorsal thalamus (MDT) in mice. The mice were kindled by electrically stimulating basolateral amygdala neurons, and Racines rank standard was employed to classify the stage of behavioral responses (stage 1~5). The coupling index and directionality index were used to investigate the synchronization and information flow direction between CA1 and MDT. Two main results were found in this study. (1) High levels of synchronization between the thalamus and hippocampus were observed before the termination of seizures at stage 4~5 but after the termination of seizures at stage 1~2. (2) In the end of seizures at stage 4~5, the information tended to flow from MDT to CA1. Those results indicate that the synchronization and information flow direction between the thalamus and the hippocampus may participate in the termination of seizures.
Frontiers in Neurology | 2017
Xin-Xin Wang; Yong-Hua Li; Hai-Qing Gong; Pei-Ji Liang; Pu-Ming Zhang; Qin-Chi Lu
Studies have reported that the subiculum is one origin of interictal-like discharges in adult patients with temporal lobe epilepsy; however, whether the subiculum represents a site of ictogenesis for neonatal seizures remains unclear. In this study, multi-electrode recording techniques were used to record epileptiform discharges induced by low-Mg2+ or high-K+ artificial cerebrospinal fluid in neonatal mouse hippocampal slices, and the spatiotemporal dynamics of the epileptiform discharges were analyzed. The Na+–K+–2Cl− cotransporter 1 (NKCC1) blocker, bumetanide, was applied to test its effect upon epileptiform discharges in low-Mg2+ model. The effect of N-methyl-d-aspartate receptors (NMDARs) antagonist, d-AP5, upon the epileptiform discharges in high-K+ model was examined. We found that the neonatal subiculum not only relayed epileptiform discharges emanating from the hippocampus proper (HP) but also initiated epileptiform discharges (interictal- and ictal-like discharges) independently. The latency to onset of the first epileptiform discharge initiated in the subiculum was similar to that initiated in the HP. Bumetanide efficiently blocked seizures in the neonatal HP, but was less effectively in suppressing seizures initiated in the subiculum. In high-K+ model, d-AP5 was more effective in blocking seizures initiated in the subiculum than that initiated in the HP. Furthermore, Western blotting analysis showed that NKCC1 expression was lower in the subiculum than that in the HP, whereas the expression of NMDAR subunits, NR2A and NR2B, was higher in the subiculum than that in the HP. Our results revealed that the subiculum was a potential site of ictogenesis in neonatal seizures and possessed similar seizure susceptibility to the HP. GABAergic excitation resulting from NKCC1 may play a less dominant role during ictogenesis in the subiculum than that in the HP. The subicular ictogenesis may be related to the glutamatergic excitation mediated by NMDARs.
international conference on bioinformatics and biomedical engineering | 2010
Xin-Wei Gong; Fan Yang; Jian-Sheng Liu; Qin-Chi Lu; Hai-Qing Gong; Pei-Ji Liang; Pu-Ming Zhang
Understanding the initiation site and propagation of epileptiform discharges in hippocampus are of important physiological significance. Here in transverse plane of hippocampus, the above questions were investigated with low-Mg2+ ACSF perfused hippocampal slices of Sprague Dawley rat using microelectrode arrays. Initiation site of epileptiform discharges was determined by comparing the onset time of field potentials as well as calculating the cross-correlation of multiunit action potentials. Time delay of epileptiform discharges between the initiation site and the other regions was obtained. The result indicates that epileptiform discharges originate from CA3b region and propagate to CA3c and proximal CA1 respectively.