Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qinbao Song is active.

Publication


Featured researches published by Qinbao Song.


IEEE Transactions on Knowledge and Data Engineering | 2013

A Fast Clustering-Based Feature Subset Selection Algorithm for High-Dimensional Data

Qinbao Song; Jingjie Ni; Guangtao Wang

Feature selection involves identifying a subset of the most useful features that produces compatible results as the original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the effectiveness is related to the quality of the subset of features. Based on these criteria, a fast clustering-based feature selection algorithm (FAST) is proposed and experimentally evaluated in this paper. The FAST algorithm works in two steps. In the first step, features are divided into clusters by using graph-theoretic clustering methods. In the second step, the most representative feature that is strongly related to target classes is selected from each cluster to form a subset of features. Features in different clusters are relatively independent, the clustering-based strategy of FAST has a high probability of producing a subset of useful and independent features. To ensure the efficiency of FAST, we adopt the efficient minimum-spanning tree (MST) clustering method. The efficiency and effectiveness of the FAST algorithm are evaluated through an empirical study. Extensive experiments are carried out to compare FAST and several representative feature selection algorithms, namely, FCBF, ReliefF, CFS, Consist, and FOCUS-SF, with respect to four types of well-known classifiers, namely, the probability-based Naive Bayes, the tree-based C4.5, the instance-based IB1, and the rule-based RIPPER before and after feature selection. The results, on 35 publicly available real-world high-dimensional image, microarray, and text data, demonstrate that the FAST not only produces smaller subsets of features but also improves the performances of the four types of classifiers.


IEEE Transactions on Software Engineering | 2011

A General Software Defect-Proneness Prediction Framework

Qinbao Song; Zihan Jia; Martin J. Shepperd; Shi Ying; Jin Liu

BACKGROUND - Predicting defect-prone software components is an economically important activity and so has received a good deal of attention. However, making sense of the many, and sometimes seemingly inconsistent, results is difficult. OBJECTIVE - We propose and evaluate a general framework for software defect prediction that supports 1) unbiased and 2) comprehensive comparison between competing prediction systems. METHOD - The framework is comprised of 1) scheme evaluation and 2) defect prediction components. The scheme evaluation analyzes the prediction performance of competing learning schemes for given historical data sets. The defect predictor builds models according to the evaluated learning scheme and predicts software defects with new data according to the constructed model. In order to demonstrate the performance of the proposed framework, we use both simulation and publicly available software defect data sets. RESULTS - The results show that we should choose different learning schemes for different data sets (i.e., no scheme dominates), that small details in conducting how evaluations are conducted can completely reverse findings, and last, that our proposed framework is more effective and less prone to bias than previous approaches. CONCLUSIONS - Failure to properly or fully evaluate a learning scheme can be misleading; however, these problems may be overcome by our proposed framework.


IEEE Transactions on Software Engineering | 2006

Software defect association mining and defect correction effort prediction

Qinbao Song; Martin J. Shepperd; Michelle Cartwright; Carolyn Mair

Much current software defect prediction work focuses on the number of defects remaining in a software system. In this paper, we present association rule mining based methods to predict defect associations and defect correction effort. This is to help developers detect software defects and assist project managers in allocating testing resources more effectively. We applied the proposed methods to the SEL defect data consisting of more than 200 projects over more than 15 years. The results show that, for defect association prediction, the accuracy is very high and the false-negative rate is very low. Likewise, for the defect correction effort prediction, the accuracy for both defect isolation effort prediction and defect correction effort prediction are also high. We compared the defect correction effort prediction method with other types of methods - PART, C4.5, and Naive Bayes - and show that accuracy has been improved by at least 23 percent. We also evaluated the impact of support and confidence levels on prediction accuracy, false-negative rate, false-positive rate, and the number of rules. We found that higher support and confidence levels may not result in higher prediction accuracy, and a sufficient number of rules is a precondition for high prediction accuracy.


IEEE Transactions on Software Engineering | 2013

Data Quality: Some Comments on the NASA Software Defect Datasets

Martin J. Shepperd; Qinbao Song; Zhongbin Sun; Carolyn Mair

Background--Self-evidently empirical analyses rely upon the quality of their data. Likewise, replications rely upon accurate reporting and using the same rather than similar versions of datasets. In recent years, there has been much interest in using machine learners to classify software modules into defect-prone and not defect-prone categories. The publicly available NASA datasets have been extensively used as part of this research. Objective--This short note investigates the extent to which published analyses based on the NASA defect datasets are meaningful and comparable. Method--We analyze the five studies published in the IEEE Transactions on Software Engineering since 2007 that have utilized these datasets and compare the two versions of the datasets currently in use. Results--We find important differences between the two versions of the datasets, implausible values in one dataset and generally insufficient detail documented on dataset preprocessing. Conclusions--It is recommended that researchers 1) indicate the provenance of the datasets they use, 2) report any preprocessing in sufficient detail to enable meaningful replication, and 3) invest effort in understanding the data prior to applying machine learners.


Pattern Recognition | 2015

A novel ensemble method for classifying imbalanced data

Zhongbin Sun; Qinbao Song; Xiaoyan Zhu; Heli Sun; Baowen Xu; Yuming Zhou

The class imbalance problems have been reported to severely hinder classification performance of many standard learning algorithms, and have attracted a great deal of attention from researchers of different fields. Therefore, a number of methods, such as sampling methods, cost-sensitive learning methods, and bagging and boosting based ensemble methods, have been proposed to solve these problems. However, these conventional class imbalance handling methods might suffer from the loss of potentially useful information, unexpected mistakes or increasing the likelihood of overfitting because they may alter the original data distribution. Thus we propose a novel ensemble method, which firstly converts an imbalanced data set into multiple balanced ones and then builds a number of classifiers on these multiple data with a specific classification algorithm. Finally, the classification results of these classifiers for new data are combined by a specific ensemble rule. In the empirical study, different class imbalance data handling methods including three conventional sampling methods, one cost-sensitive learning method, six Bagging and Boosting based ensemble methods, our previous method EM1vs1 and two fuzzy-rule based classification methods were compared with our method. The experimental results on 46 imbalanced data sets show that our proposed method is usually superior to the conventional imbalance data handling methods when solving the highly imbalanced problems. HighlightsWe propose a novel ensemble method to handle imbalanced binary data.The method turns imbalanced data learning into multiple balanced data learning.Our method usually performs better than the conventional methods on imbalanced data.


ieee international software metrics symposium | 2003

Dealing with missing software project data

Michelle Cartwright; Martin J. Shepperd; Qinbao Song

Whilst there is a general consensus that quantitative approaches are an important part of successful software project management, there has been relatively little research into many of the obstacles to data collection and analysis in the real world. One feature that characterises many of the data sets we deal with is missing or highly questionable values. Naturally this problem is not unique to software engineering, so we explore the application of two existing data imputation techniques that have been used to good effect elsewhere. In order to assess the potential value of imputation we use two industrial data sets. Both are quite problematic from an effort modelling perspective because they contain few cases, have a significant number of missing values and the projects are quite heterogeneous. We examine the quality of fit of effort models derived by stepwise regression on the raw data and data sets with values imputed by various techniques is compared. In both data sets we find that k-nearest neighbour (k-NN) and sample mean imputation (SMI) significantly improve the model fit, with k-NN giving the best results. These results are consistent with other recently published results, consequently we conclude that imputation can assist empirical software engineering.


PLOS ONE | 2011

Towards online multiresolution community detection in large-scale networks.

Jianbin Huang; Heli Sun; Yaguang Liu; Qinbao Song; Tim Weninger

The investigation of community structure in networks has aroused great interest in multiple disciplines. One of the challenges is to find local communities from a starting vertex in a network without global information about the entire network. Many existing methods tend to be accurate depending on a priori assumptions of network properties and predefined parameters. In this paper, we introduce a new quality function of local community and present a fast local expansion algorithm for uncovering communities in large-scale networks. The proposed algorithm can detect multiresolution community from a source vertex or communities covering the whole network. Experimental results show that the proposed algorithm is efficient and well-behaved in both real-world and synthetic networks.


Journal of Systems and Software | 2007

A new imputation method for small software project data sets

Qinbao Song; Martin J. Shepperd

Effort prediction is a very important issue for software project management. Historical project data sets are frequently used to support such prediction. But missing data are often contained in these data sets and this makes prediction more difficult. One common practice is to ignore the cases with missing data, but this makes the originally small software project database even smaller and can further decrease the accuracy of prediction. The alternative is missing data imputation. There are many imputation methods. Software data sets are frequently characterised by their small size but unfortunately sophisticated imputation methods prefer larger data sets. For this reason we explore using simple methods to impute missing data in small project effort data sets. We propose a class mean imputation (CMI) method based on the k-NN hot deck imputation method (MINI) to impute both continuous and nominal missing data in small data sets. We use an incremental approach to increase the variance of population. To evaluate MINI (and k-NN and CMI methods as benchmarks) we use data sets with 50 cases and 100 cases sampled from a larger industrial data set with 10%, 15%, 20% and 30% missing data percentages respectively. We also simulate Missing Completely at Random (MCAR) and Missing at Random (MAR) missingness mechanisms. The results suggest that the MINI method outperforms both CMI and the k-NN methods. We conclude that this new imputation technique can be used to impute missing values in small data sets.


systems man and cybernetics | 2012

Using Coding-Based Ensemble Learning to Improve Software Defect Prediction

Zhongbin Sun; Qinbao Song; Xiaoyan Zhu

Using classification methods to predict software defect proneness with static code attributes has attracted a great deal of attention. The class-imbalance characteristic of software defect data makes the prediction much difficult; thus, a number of methods have been employed to address this problem. However, these conventional methods, such as sampling, cost-sensitive learning, Bagging, and Boosting, could suffer from the loss of important information, unexpected mistakes, and overfitting because they alter the original data distribution. This paper presents a novel method that first converts the imbalanced binary-class data into balanced multiclass data and then builds a defect predictor on the multiclass data with a specific coding scheme. A thorough experiment with four different types of classification algorithms, three data coding schemes, and six conventional imbalance data-handling methods was conducted over the 14 NASA datasets. The experimental results show that the proposed method with a one-against-one coding scheme is averagely superior to the conventional methods.


Expert Systems With Applications | 2011

Predicting software project effort

Qinbao Song; Martin J. Shepperd

Research highlights? We propose a novel approach of using grey relational analysis (GRA) to predict software effort prediction with outlier detection and feature subset selection at an early stage of a project. ? GRA is a recently developed system engineering method based on the uncertainty of small samples. ? We evaluate our approach on five publicly available industrial data sets using both stepwise regression and Analogy as benchmarks. ? The results are very encouraging in the sense of being comparable or better than other machine learning techniques and thus indicate that the method has considerable potential. The inherent uncertainty of the software development process presents particular challenges for software effort prediction. We need to systematically address missing data values, outlier detection, feature subset selection and the continuous evolution of predictions as the project unfolds, and all of this in the context of data-starvation and noisy data. However, in this paper, we particularly focus on outlier detection, feature subset selection, and effort prediction at an early stage of a project. We propose a novel approach of using grey relational analysis (GRA) from grey system theory (GST), which is a recently developed system engineering theory based on the uncertainty of small samples. In this work we address some of the theoretical challenges in applying GRA to outlier detection, feature subset selection, and effort prediction, and then evaluate our approach on five publicly available industrial data sets using both stepwise regression and Analogy as benchmarks. The results are very encouraging in the sense of being comparable or better than other machine learning techniques and thus indicate that the method has considerable potential.

Collaboration


Dive into the Qinbao Song's collaboration.

Top Co-Authors

Avatar

Guangtao Wang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Jun-Yi Shen

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Heli Sun

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyan Zhu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhongbin Sun

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xueying Zhang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Hong Hou

Software Engineering Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge