Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qing-Dong Wang is active.

Publication


Featured researches published by Qing-Dong Wang.


Cell Research | 2016

Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes

Qiaozhen Liu; Rui Yang; Xiuzhen Huang; Hui Zhang; Lingjuan He; Libo Zhang; Xueying Tian; Yu Nie; Shengshou Hu; Yan Yan; Li Zhang; Zengyong Qiao; Qing-Dong Wang; Kathy O. Lui; Bin Zhou

Cardiac cells marked by c-Kit or Kit, dubbed cardiac stem cells (CSCs), are in clinical trials to investigate their ability to stimulate cardiac regeneration and repair. These studies were initially motivated by the purported cardiogenic activity of these cells. Recent lineage tracing studies using Kit promoter to drive expression of the inducible Cre recombinase showed that these CSCs had highly limited cardiogenic activity, inadequate to support efficient cardiac repair. Here we reassess the lineage tracing data by investigating the identity of cells immediately after Cre labeling. Our instant lineage tracing approach identifies Kit-expressing cardiomyocytes, which are labeled immediately after tamoxifen induction. In combination with long-term lineage tracing experiments, these data reveal that the large majority of long-term labeled cardiomyocytes are pre-existing Kit-expressing cardiomyocytes rather than cardiomyocytes formed de novo from CSCs. This study presents a new interpretation for the contribution of Kit+ cells to cardiomyocytes and shows that Kit genetic lineage tracing over-estimates the cardiogenic activity of Kit+ CSCs.


Nature Medicine | 2015

c-kit+ cells adopt vascular endothelial but not epithelial cell fates during lung maintenance and repair

Qiaozhen Liu; Xiuzhen Huang; Hui Zhang; Xueying Tian; Lingjuan He; Rui Yang; Yan Yan; Qing-Dong Wang; Astrid Gillich; Bin Zhou

Unraveling the fate specification of resident stem cells during lung regeneration is of clinical importance. It has been reported that c-kit+ progenitor cells resident in the human lung regenerate epithelial lineages upon transplantation into injured mouse lung. Here we test the lineage potential of c-kit+ cells by inducible genetic lineage tracing. We find that c-kit+ cells do not contribute to lung epithelium during homeostasis and repair, and instead maintain a vascular endothelial cell fate. These findings call attention to the clinical application of c-kit+ stem cells as lung epithelial progenitors for the treatment of pulmonary disease.


Journal of Clinical Investigation | 2017

Preexisting endothelial cells mediate cardiac neovascularization after injury

Lingjuan He; Xiuzhen Huang; Onur Kanisicak; Yi Li; Yue Wang; Yan Li; Wenjuan Pu; Qiaozhen Liu; Hui Zhang; Xueying Tian; Huan Zhao; Xiuxiu Liu; Shaohua Zhang; Yu Nie; Shengshou Hu; Xiang Miao; Qing-Dong Wang; Fengchao Wang; Ting Chen; Qingbo Xu; Kathy O. Lui; Jeffery D. Molkentin; Bin Zhou

The mechanisms that promote the generation of new coronary vasculature during cardiac homeostasis and after injury remain a fundamental and clinically important area of study in the cardiovascular field. Recently, it was reported that mesenchymal-to-endothelial transition (MEndoT) contributes to substantial numbers of coronary endothelial cells after myocardial infarction. Therefore, the MEndoT has been proposed as a paradigm mediating neovascularization and is considered a promising therapeutic target in cardiac regeneration. Here, we show that preexisting endothelial cells mainly beget new coronary vessels in the adult mouse heart, with essentially no contribution from other cell sources through cell-lineage transdifferentiation. Genetic-lineage tracing revealed that cardiac fibroblasts expand substantially after injury, but do not contribute to the formation of new coronary blood vessels, indicating no contribution of MEndoT to neovascularization. Moreover, genetic-lineage tracing with a pulse-chase labeling strategy also showed that essentially all new coronary vessels in the injured heart are derived from preexisting endothelial cells, but not from other cell lineages. These data indicate that therapeutic strategies for inducing neovascularization should not be based on targeting presumptive lineage transdifferentiation such as MEndoT. Instead, preexisting endothelial cells appear more likely to be the therapeutic target for promoting neovascularization and driving heart regeneration after injury.


Nature Medicine | 2017

Enhancing the precision of genetic lineage tracing using dual recombinases

Lingjuan He; Yan Li; Yi Li; Wenjuan Pu; Xiuzhen Huang; Xueying Tian; Yue Wang; Hui Zhang; Qiaozhen Liu; Libo Zhang; Huan Zhao; Juan Tang; Hongbin Ji; Dongqing Cai; Zhibo Han; Zhongchao Han; Yu Nie; Shengshou Hu; Qing-Dong Wang; Ruilin Sun; Jian Fei; Fengchao Wang; Ting Chen; Yan Yan; Hefeng Huang; William T. Pu; Bin Zhou

The Cre–loxP recombination system is the most widely used technology for in vivo tracing of stem or progenitor cell lineages. The precision of this genetic system largely depends on the specificity of Cre recombinase expression in targeted stem or progenitor cells. However, Cre expression in nontargeted cell types can complicate the interpretation of lineage-tracing studies and has caused controversy in many previous studies. Here we describe a new genetic lineage tracing system that incorporates the Dre–rox recombination system to enhance the precision of conventional Cre–loxP-mediated lineage tracing. The Dre–rox system permits rigorous control of Cre–loxP recombination in lineage tracing, effectively circumventing potential uncertainty of the cell-type specificity of Cre expression. Using this new system we investigated two topics of recent debates—the contribution of c-Kit+ cardiac stem cells to cardiomyocytes in the heart and the contribution of Sox9+ hepatic progenitor cells to hepatocytes in the liver. By overcoming the technical hurdle of nonspecific Cre–loxP-mediated recombination, this new technology provides more precise analysis of cell lineage and fate decisions and facilitates the in vivo study of stem and progenitor cell plasticity in disease and regeneration.


Circulation | 2017

An IGF1R-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury

Marcela S. Oliveira; Lillian Y. Ye; Qing Ma; Nishat Sultana; Yoav Hadas; Elena Chepurko; Daniela Später; Bin Zhou; Wei Leong Chew; Wataru Ebina; Maryline Abrial; Qing-Dong Wang; William T. Pu; Kenneth R. Chien

Background: Epicardial adipose tissue volume and coronary artery disease are strongly associated, even after accounting for overall body mass. Despite its pathophysiological significance, the origin and paracrine signaling pathways that regulate epicardial adipose tissue’s formation and expansion are unclear. Methods: We used a novel modified mRNA-based screening approach to probe the effect of individual paracrine factors on epicardial progenitors in the adult heart. Results: Using 2 independent lineage-tracing strategies in murine models, we show that cells originating from the Wt1+ mesothelial lineage, which includes epicardial cells, differentiate into epicardial adipose tissue after myocardial infarction. This differentiation process required Wt1 expression in this lineage and was stimulated by insulin-like growth factor 1 receptor (IGF1R) activation. IGF1R inhibition within this lineage significantly reduced its adipogenic differentiation in the context of exogenous, IGF1-modified mRNA stimulation. Moreover, IGF1R inhibition significantly reduced Wt1 lineage cell differentiation into adipocytes after myocardial infarction. Conclusions: Our results establish IGF1R signaling as a key pathway that governs epicardial adipose tissue formation in the context of myocardial injury by redirecting the fate of Wt1+ lineage cells. Our study also demonstrates the power of modified mRNA -based paracrine factor library screening to dissect signaling pathways that govern progenitor cell activity in homeostasis and disease.


Nature Communications | 2017

Identification of a hybrid myocardial zone in the mammalian heart after birth

Xueying Tian; Yan Li; Lingjuan He; Hui Zhang; Xiuzhen Huang; Qiaozhen Liu; Wenjuan Pu; Libo Zhang; Yi Li; Huan Zhao; Zhifu Wang; Jianhong Zhu; Yu Nie; Shengshou Hu; David Sedmera; Tao P. Zhong; Ying Yu; Li Zhang; Yan Yan; Zengyong Qiao; Qing-Dong Wang; Sean M. Wu; William T. Pu; Robert H. Anderson; Bin Zhou

Noncompaction cardiomyopathy is characterized by the presence of extensive trabeculations, which could lead to heart failure and malignant arrhythmias. How trabeculations resolve to form compact myocardium is poorly understood. Elucidation of this process is critical to understanding the pathophysiology of noncompaction disease. Here we use genetic lineage tracing to mark the Nppa+ or Hey2+ cardiomyocytes as trabecular and compact components of the ventricular wall. We find that Nppa+ and Hey2+ cardiomyocytes, respectively, from the endocardial and epicardial zones of the ventricular wall postnatally. Interposed between these two postnatal layers is a hybrid zone, which is composed of cells derived from both the Nppa+ and Hey2+ populations. Inhibition of the fetal Hey2+ cell contribution to the hybrid zone results in persistence of excessive trabeculations in postnatal heart. Our findings indicate that the expansion of Hey2+ fetal compact component, and its contribution to the hybrid myocardial zone, are essential for normal formation of the ventricular walls.Fetal trabecular muscles in the heart undergo a poorly described morphogenetic process that results into a solidified compact myocardium after birth. Tian et al. show that cardiomyocytes in the fetal compact layer also contribute to this process, forming a hybrid myocardial zone that is composed of cells derived from both trabecular and compact layers.


Nature Biomedical Engineering | 2016

Long-term self-renewing human epicardial cells generated from pluripotent stem cells under defined xeno-free conditions

Xiaoping Bao; Xiaojun Lian; Timothy A. Hacker; Eric G. Schmuck; Tongcheng Qian; Vijesh Jagdish Bhute; Tianxiao Han; Mengxuan Shi; Lauren Drowley; Alleyn T. Plowright; Qing-Dong Wang; Marie-José Goumans; Sean P. Palecek

The epicardium contributes both multi-lineage descendants and paracrine factors to the heart during cardiogenesis and cardiac repair, underscoring its potential for cardiac regenerative medicine. Yet little is known about the cellular and molecular mechanisms that regulate human epicardial development and regeneration. Here, we show that the temporal modulation of canonical Wnt signaling is sufficient for epicardial induction from 6 different human pluripotent stem cell (hPSC) lines, including a WT1-2A-eGFP knock-in reporter line, under chemically-defined, xeno-free conditions. We also show that treatment with transforming growth factor beta (TGF-β)-signalling inhibitors permitted long-term expansion of the hPSC-derived epicardial cells, resulting in a more than 25 population doublings of WT1+ cells in homogenous monolayers. The hPSC-derived epicardial cells were similar to primary epicardial cells both in vitro and in vivo, as determined by morphological and functional assays, including RNA-seq. Our findings have implications for the understanding of self-renewal mechanisms of the epicardium and for epicardial regeneration using cellular or small-molecule therapies.


Cell Research | 2017

Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium

Hui Zhang; Xiuzhen Huang; Kuo Liu; Juan Tang; Lingjuan He; Wenjuan Pu; Qiaozhen Liu; Yan Li; Xueying Tian; Yue Wang; Libo Zhang; Ying Yu; Hongyan Wang; Ronggui Hu; Fengchao Wang; Ting Chen; Qing-Dong Wang; Zengyong Qiao; Li Zhang; Kathy O. Lui; Bin Zhou

Endocardial fibroelastosis (EFE) refers to the thickening of the ventricular endocardium as a result of de novo deposition of subendocardial fibrous tissue layers during neonatal heart development. The origin of EFE fibroblasts is proposed to be postnatal endocardial cells that undergo an aberrant endothelial-to-mesenchymal transition (EndMT). Genetic lineage tracing of endocardial cells with the inducible endocardial Cre line Npr3-CreER and the endothelial cell tracing line Cdh5-CreER on an EFE-like model did not reveal any contribution of neonatal endocardial cells to fibroblasts in the EFE-like tissues. Instead, lineage tracing of embryonic epicardium by Wt1-CreER suggested that epicardium-derived mesenchymal cells (MCs) served as the major source of EFE fibroblasts. By labeling MCs using Sox9-CreER, we confirmed that MCs of the embryonic heart expand and contribute to the majority of neonatal EFE fibroblasts. During this pathological process, TGFβ signaling, the key mediator of fibroblasts activation, was highly upregulated in the EFE-like tissues. Targeting TGFβ signaling by administration of its antagonist bone morphogenetic protein 7 effectively reduced fibroblast accumulation and tissue fibrosis in the EFE-like model. Our study provides genetic evidence that excessive fibroblasts in the EFE-like tissues mainly originate from the epicardium-derived MCs through epicardial to mesenchymal transition (EpiMT). These EpiMT-derived fibroblasts within the EFE-like tissues could serve as a potential therapeutic target.


ACS Chemical Biology | 2017

Phenotypic Screen for Cardiac Regeneration Identifies Molecules with Differential Activity in Human Epicardium-Derived Cells versus Cardiac Fibroblasts.

Amalia I. Paunovic; Lauren Drowley; Anneli Nordqvist; Elke Ericson; Elizabeth Mouchet; Anna Jonebring; Gunnar Grönberg; Alexander J. Kvist; Ola Engkvist; Martin R. Brown; Karin Gedda; Marie-José Goumans; Qing-Dong Wang; Alleyn T. Plowright

Activation and proliferation of resident cardiac progenitor cells has therapeutic potential to repair the heart after injury. However, research has been impeded by a lack of well-defined and characterized cell sources and difficulties in translation to screening platforms. Here, we describe the development, validation, and use of a 384-well phenotypic assay in primary human epicardium-derived cells (EPDCs) to identify compounds that induce proliferation while maintaining the progenitor phenotype. Using this assay, we screened 7400 structurally diverse compounds where greater than 90% are biologically annotated and known to modulate a broad range of biological targets. From the primary screen, we identified and validated hits and expanded upon the lead molecules of interest. A counterscreen was developed in human cardiac fibroblasts to filter out compounds with a general proliferative effect, after which the activity of selected molecules was confirmed across multiple EPDC donors. To further examine the mechanism of action of compounds with annotated targets, we performed knockdown experiments to understand whether a single known target was responsible for the proliferative effect, confirming results with protein expression and activity assays. Here, we were able to show that the annotated targets of compounds of interest were not responsible for the proliferative effect, which highlights potential differences in cell types and signaling pathways and possible polypharmacology. These studies demonstrate the feasibility of using relevant human primary cells in a phenotypic screen to identify compounds as novel biological tools and starting points for drug discovery projects, and we disclose the first small molecules to proliferate human primary EPDCs.


Molecular therapy. Methods & clinical development | 2018

Biocompatible, Purified VEGF-A mRNA Improves Cardiac Function after Intracardiac Injection 1 Week Post-myocardial Infarction in Swine

Leif Carlsson; Jonathan Clarke; Christopher Y. T. Yen; Francine Gregoire; Tamsin Albery; Martin Billger; Ann-Charlotte Egnell; Li-Ming Gan; Karin Jennbacken; Edvin Johansson; Gunilla Linhardt; Sofia Martinsson; Muhammad Waqas Sadiq; Nevin Witman; Qing-Dong Wang; Chien-Hsi Chen; Yu‐Ping Wang; Susan Lin; Barry Ticho; Patrick C.H. Hsieh; Kenneth R. Chien; Regina Fritsche-Danielson

mRNA can direct dose-dependent protein expression in cardiac muscle without genome integration, but to date has not been shown to improve cardiac function in a safe, clinically applicable way. Herein, we report that a purified and optimized mRNA in a biocompatible citrate-saline formulation is tissue specific, long acting, and does not stimulate an immune response. In small- and large-animal, permanent occlusion myocardial infarction models, VEGF-A 165 mRNA improves systolic ventricular function and limits myocardial damage. Following a single administration a week post-infarction in mini pigs, left ventricular ejection fraction, inotropy, and ventricular compliance improved, border zone arteriolar and capillary density increased, and myocardial fibrosis decreased at 2 months post-treatment. Purified VEGF-A mRNA establishes the feasibility of improving cardiac function in the sub-acute therapeutic window and may represent a new class of therapies for ischemic injury.

Collaboration


Dive into the Qing-Dong Wang's collaboration.

Top Co-Authors

Avatar

Bin Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hui Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lingjuan He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiaozhen Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiuzhen Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xueying Tian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Libo Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenjuan Pu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shengshou Hu

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge