Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qing Yao is active.

Publication


Featured researches published by Qing Yao.


Science | 2010

Glutamine Deamidation and Dysfunction of Ubiquitin/NEDD8 Induced by a Bacterial Effector Family

Jixin Cui; Qing Yao; Shan Li; Xiaojun Ding; Qiuhe Lu; Haibin Mao; Liping Liu; Ning Zheng; She Chen; Feng Shao

Gee-Up, NEDD8 Diverse bacterial pathogens, such as Burkholderia pseudomallei and enteropathogenic Escherichia coli (EPEC), inject effector proteins into eukaryotic host cells to subvert host cell biology. Cui et al. (p. 1215; published online 5 August) show that certain bacterial effector proteins promoted the glutamine deamidation of ubiquitin and the ubiquitin-related protein, NEDD8. The modification of ubiquitin inhibited the formation of polyubiquitin chains while, unexpectedly, the same chemical alteration on NEDD8 interfered with the cell cycle, offering insights not only into the cytopathic effects of bacterial infection but also into mechanisms that may operate during viral infection and cancer. Pathogenic bacterial proteins interfere with eukaryotic ubiquitination pathways to induce cytopathic effects. A family of bacterial effectors including Cif homolog from Burkholderia pseudomallei (CHBP) and Cif from Enteropathogenic Escherichia coli (EPEC) adopt a functionally important papain-like hydrolytic fold. We show here that CHBP was a potent inhibitor of the eukaryotic ubiquitination pathway. CHBP acted as a deamidase that specifically and efficiently deamidated Gln40 in ubiquitin and ubiquitin-like protein NEDD8 both in vitro and during Burkholderia infection. Deamidated ubiquitin was impaired in supporting ubiquitin-chain synthesis. Cif selectively deamidated NEDD8, which abolished the activity of neddylated Cullin-RING ubiquitin ligases (CRLs). Ubiquitination and ubiquitin-dependent degradation of multiple CRL substrates were impaired by Cif in EPEC-infected cells. Mutations of substrate-contacting residues in Cif abolished or attenuated EPEC-induced cytopathic phenotypes of cell cycle arrest and actin stress fiber formation.


Nature | 2013

Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains

Shan Li; Li Zhang; Qing Yao; Lin Li; Na Dong; Jie Rong; Wenqing Gao; Xiaojun Ding; Liming Sun; Xing Chen; She Chen; Feng Shao

The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-κB (NF-κB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-κB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA

Yongqun Zhu; Liyan Hu; Yan Zhou; Qing Yao; Liping Liu; Feng Shao

Bacterial pathogens deliver effector proteins with diverse biochemical activities into host cells, thereby modulating various host functions. Legionella pneumophila hijacks host vesicle trafficking to avoid phagosome–lysosome fusion, a mechanism that is dependent on the Legionella Dot/Icm type IV secretion system. SidM/DrrA, a Legionella type IV effector, is important for the interactions of Legionella-containing vacuoles with host endoplasmic reticulum–derived vesicles. SidM is the only known protein that catalyzes both the exchange of GDP for GTP and GDI displacement from small GTPase Rab1. We determined the crystal structures of SidM alone (residues 317–647) and SidM (residues 193–550) in complex with nucleotide-free WT Rab1. The SidM structure contains an N-terminal helical domain with a potential new function, a Rab1-activation domain, and a C-terminal phosphatidylinositol 4-phosphate–binding P4M domain. The Rab1-activation domain has extensive strong interactions mainly with Rab1 switch I and II regions that undergo substantial conformational changes on SidM binding. Mutations of switch-contacting residues in SidM attenuate both the nucleotide exchange and GDI displacement activities. Structural comparisons of Rab1 in the SidM complex with Rab1-GDP and Ypt1-GDP in the GDI complex identify key conformational changes that disrupt the nucleotide and GDI binding of Rab1. Further biochemical and structural analyses reveal a unique mechanism of coupled GDP release and GDI displacement likely triggered by the SidM-induced drastic displacement of switch I of Rab1.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle

Qing Yao; Jixin Cui; Yongqun Zhu; Guolun Wang; Liyan Hu; Chengzu Long; Ran Cao; Xinqi Liu; Niu Huang; She Chen; Liping Liu; Feng Shao

Pathogenic bacteria deliver effector proteins into host cells through the type III secretion apparatus to modulate the host function. We identify a family of proteins, homologous to the type III effector Cif from enteropathogenic Escherichia coli, in pathogens including Yersinia, Photorhabdus, and Burkholderia that contain functional type III secretion systems. Like Cif, this family of proteins is capable of arresting the host cell cycle at G2/M. Structure of one of the family members, Cif homolog in Burkholderia pseudomallei (CHBP), reveals a papain-like fold and a conserved Cys-His-Gln catalytic triad despite the lack of primary sequence identity. For CHBP and Cif, only the putative catalytic Cys is susceptible to covalent modification by E-64, a specific inhibitor of papain-like cysteine proteases. Unlike papain-like enzymes where the S2 site is the major determinant of cleavage-site specificity, CHBP has a characteristic negatively charged pocket occupying surface areas corresponding to the S1/S1′ site in papain-like proteases. The negative charge is provided by a conserved aspartate, and the pocket best fits an arginine, as revealed by molecular docking analysis. Mutation analysis establishes the essential role of the catalytic triad and the negatively charged pocket in inducing cell cycle arrest in host cells. Our results demonstrate that bacterial pathogens have evolved a unique papain-like hydrolytic activity to block the normal host cell cycle progression.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis

Qing Yao; Jixin Cui; Jiayi Wang; Ting Li; Xiaobo Wan; Tianming Luo; Yi-Nan Gong; Ying Xu; Niu Huang; Feng Shao

Targeting eukaryotic proteins for deamidation modification is increasingly appreciated as a general bacterial virulence mechanism. Here, we present an atomic view of how a bacterial deamidase effector, cycle-inhibiting factor homolog in Burkholderia pseudomallei (CHBP), recognizes its host targets, ubiquitin (Ub) and Ub-like neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), and catalyzes site-specific deamidation. Crystal structures of CHBP–Ub/NEDD8 complexes show that Ub and NEDD8 are similarly cradled by a large cleft in CHBP with four contacting surfaces. The pattern of Ub/NEDD8 recognition by CHBP resembles that by the E1 activation enzyme, which critically involves the Lys-11 surface in Ub/NEDD8. Close examination of the papain-like catalytic center reveals structural determinants of CHBP being an obligate glutamine deamidase. Molecular-dynamics simulation identifies Gln-31/Glu-31 of Ub/NEDD8 as one key determinant of CHBP substrate preference for NEDD8. Inspired by the idea of using the unique bacterial activity as a tool, we further discover that CHBP-catalyzed NEDD8 deamidation triggers macrophage-specific apoptosis, which predicts a previously unknown macrophage-specific proapoptotic signal that is negatively regulated by neddylation-mediated protein ubiquitination/degradation.


PLOS Pathogens | 2014

Structure and Specificity of the Bacterial Cysteine Methyltransferase Effector NleE Suggests a Novel Substrate in Human DNA Repair Pathway

Qing Yao; Li Zhang; Xiaobo Wan; Jing Chen; Liyan Hu; Xiaojun Ding; Lin Li; Jayashree Karar; Hongzhuang Peng; She Chen; Niu Huang; Frank J. Rauscher; Feng Shao

Enteropathogenic E. coli (EPEC) and related enterobacteria rely on a type III secretion system (T3SS) effector NleE to block host NF-κB signaling. NleE is a first in class, novel S-adenosyl-L-methionine (SAM)-dependent methyltransferase that methylates a zinc-coordinating cysteine in the Npl4-like Zinc Finger (NZF) domains in TAB2/3 adaptors in the NF-κB pathway, but its mechanism of action and other human substrates are unknown. Here we solve crystal structure of NleE-SAM complex, which reveals a methyltransferase fold different from those of known ones. The SAM, cradled snugly at the bottom of a deep and narrow cavity, adopts a unique conformation ready for nucleophilic attack by the methyl acceptor. The substrate NZF domain can be well docked into the cavity, and molecular dynamic simulation indicates that Cys673 in TAB2-NZF is spatially and energetically favorable for attacking the SAM. We further identify a new NleE substrate, ZRANB3, that functions in PCNA binding and remodeling of stalled replication forks at the DNA damage sites. Specific inactivation of the NZF domain in ZRANB3 by NleE offers a unique opportunity to suggest that ZRANB3-NZF domain functions in DNA repair processes other than ZRANB3 recruitment to DNA damage sites. Our analyses suggest a novel and unexpected link between EPEC infection, virulence proteins and genome integrity.


Cell Research | 2013

Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP

Qin Yu; Liyan Hu; Qing Yao; Yongqun Zhu; Na Dong; Da-Cheng Wang; Feng Shao

Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.


eLife | 2014

A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family

Qing Yao; Qiuhe Lu; Xiaobo Wan; Feng Song; Yue Xu; Mo Hu; Alla Zamyatina; Xiaoyun Liu; Niu Huang; Ping Zhu; Feng Shao

A large group of bacterial virulence autotransporters including AIDA-I from diffusely adhering E. coli (DAEC) and TibA from enterotoxigenic E. coli (ETEC) require hyperglycosylation for functioning. Here we demonstrate that TibC from ETEC harbors a heptosyltransferase activity on TibA and AIDA-I, defining a large family of bacterial autotransporter heptosyltransferases (BAHTs). The crystal structure of TibC reveals a characteristic ring-shape dodecamer. The protomer features an N-terminal β-barrel, a catalytic domain, a β-hairpin thumb, and a unique iron-finger motif. The iron-finger motif contributes to back-to-back dimerization; six dimers form the ring through β-hairpin thumb-mediated hand-in-hand contact. The structure of ADP-D-glycero-β-D-manno-heptose (ADP-D,D-heptose)-bound TibC reveals a sugar transfer mechanism and also the ligand stereoselectivity determinant. Electron-cryomicroscopy analyses uncover a TibC–TibA dodecamer/hexamer assembly with two enzyme molecules binding to one TibA substrate. The complex structure also highlights a high efficient hyperglycosylation of six autotransporter substrates simultaneously by the dodecamer enzyme complex. DOI: http://dx.doi.org/10.7554/eLife.03714.001


Nature microbiology | 2017

Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector.

Na Dong; Miao Niu; Liyan Hu; Qing Yao; Rui Zhou; Feng Shao

Legionella pneumophila, the causative bacterium for Legionnaires’ disease, hijacks host membrane trafficking for the maturation of the Legionella-containing vacuole (LCV). The LCV membrane mainly contains PtdIns4P, which is important for anchoring many secreted Legionella effectors onto the LCV. Here, we identify a cryptic functional domain (LepB_NTD) preceding the well-characterized RabGAP domain in the Legionella Dot/Icm type IV secretion system effector LepB. LepB_NTD alone is toxic to yeast and can disrupt the Golgi in mammalian cells. The crystal structure reveals an unexpected kinase fold and catalytic motif important for LepB_NTD function in eukaryotes. Cell biology-guided biochemical analyses uncovered a lipid kinase activity in LepB_NTD that specifically converts PtdIns3P into PtdIns(3,4)P2. PtdIns(3,4)P2 is efficiently hydrolysed into PtdIns4P by another Dot/Icm effector SidF that is known to possess phosphoinositide phosphatase activity. Consistently, SidF is capable of counteracting the cellular functions of LepB_NTD. Genetic analyses show a requirement for LepB kinase activity as well as lipid phosphatase activity of SidF for PtdIns4P biosynthesis on the LCV membrane. Our study identifies an unprecedented phosphatidylinositide 4-kinase activity from bacteria and highlights a sophisticated manipulation of host phosphoinositide metabolism by a bacterial pathogen.


Cellular Microbiology | 2015

A polar-localized iron-binding protein determines the polar targeting of Burkholderia BimA autotransporter and actin tail formation

Qiuhe Lu; Yue Xu; Qing Yao; Miao Niu; Feng Shao

Intracellular bacterial pathogens including Shigella, Listeria, Mycobacteria, Rickettsia and Burkholderia spp. deploy a specialized surface protein onto one pole of the bacteria to induce filamentous actin tail formation for directional movement within host cytosol. The mechanism underlying polar targeting of the actin tail proteins is unknown. Here we perform a transposon screen in Burkholderia thailandensis and identify a conserved bimC that is required for actin tail formation mediated by BimA from B. thailandensis and its closely related pathogenic species B. pseudomallei and B. mallei. bimC is located upstream of bimA in the same operon. Loss of bimC results in even distribution of BimA on the outer membrane surface, where actin polymerization still occurs. BimC is targeted to the same bacterial pole independently of BimA. BimC confers polar targeting of BimA prior to BimA translocation across bacterial inner membrane. BimC is an iron‐binding protein, requiring a four‐cysteine cluster at the carboxyl terminus. Mutation of the cysteine cluster disrupts BimC polar localization. Truncation analyses identify the transmembrane domain in BimA being responsible for its polar targeting. Consistently, BimC can interact with BimA transmembrane domain in an iron binding‐dependent manner. Our study uncovers a new mechanism that determines the polar distribution of bacteria‐induced actin tail in infected host cells.

Collaboration


Dive into the Qing Yao's collaboration.

Top Co-Authors

Avatar

Feng Shao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

She Chen

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar

Niu Huang

University of California

View shared research outputs
Top Co-Authors

Avatar

Li Zhang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Na Dong

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shan Li

Hubei University of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yongqun Zhu

Life Sciences Institute

View shared research outputs
Top Co-Authors

Avatar

Yue Xu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge