Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qing Z. Trepte is active.

Publication


Featured researches published by Qing Z. Trepte.


IEEE Transactions on Geoscience and Remote Sensing | 2011

CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part I: Algorithms

Patrick Minnis; Szedung Sun-Mack; David F. Young; P. W. Heck; D. P. Garber; Yan Chen; Douglas A. Spangenberg; Robert F. Arduini; Qing Z. Trepte; William L. Smith; J. K. Ayers; Sharon Gibson; Walter F. Miller; Gang Hong; V. Chakrapani; Y. Takano; Kuo-Nan Liou; Yu Xie; Ping Yang

The National Aeronautics and Space Administrations Clouds and the Earths Radiant Energy System (CERES) Project was designed to improve our understanding of the relationship between clouds and solar and longwave radiation. This is achieved using satellite broad-band instruments to map the top-of-atmosphere radiation fields with coincident data from satellite narrow-band imagers employed to retrieve the properties of clouds associated with those fields. This paper documents the CERES Edition-2 cloud property retrieval system used to analyze data from the Tropical Rainfall Measuring Mission Visible and Infrared Scanner and by the MODerate-resolution Imaging Spectrometer instruments on board the Terra and Aqua satellites covering the period 1998 through 2007. Two daytime retrieval methods are explained: the Visible Infrared Shortwave-infrared Split-window Technique for snow-free surfaces and the Shortwave-infrared Infrared Near-infrared Technique for snow or ice-covered surfaces. The Shortwave-infrared Infrared Split-window Technique is used for all surfaces at night. These methods, along with the ancillary data and empirical parameterizations of cloud thickness, are used to derive cloud boundaries, phase, optical depth, effective particle size, and condensed/frozen water path at both pixel and CERES footprint levels. Additional information is presented, detailing the potential effects of satellite calibration differences, highlighting methods to compensate for spectral differences and correct for atmospheric absorption and emissivity, and discussing known errors in the code. Because a consistent set of algorithms, auxiliary input, and calibrations across platforms are used, instrument and algorithm-induced changes in the data record are minimized. This facilitates the use of the CERES data products for studying climate-scale trends.


IEEE Transactions on Geoscience and Remote Sensing | 2011

CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part II: Examples of Average Results and Comparisons With Other Data

Patrick Minnis; Szedung Sun-Mack; Yan Chen; M. M. Khaiyer; Yuhong Yi; J. K. Ayers; Ricky R. Brown; Xiquan Dong; Sharon Gibson; P. W. Heck; Bing Lin; Michele L. Nordeen; Louis Nguyen; Rabindra Palikonda; William L. Smith; Douglas A. Spangenberg; Qing Z. Trepte; Baike Xi

Cloud properties were retrieved by applying the Clouds and Earths Radiant Energy System (CERES) project Edition-2 algorithms to 3.5 years of Tropical Rainfall Measuring Mission Visible and Infrared Scanner data and 5.5 and 8 years of MODerate Resolution Imaging Spectroradiometer (MODIS) data from Aqua and Terra, respectively. The cloud products are consistent quantitatively from all three imagers; the greatest discrepancies occur over ice-covered surfaces. The retrieved cloud cover (~59%) is divided equally between liquid and ice clouds. Global mean cloud effective heights, optical depth, effective particle sizes, and water paths are 2.5 km, 9.9, 12.9 μm , and 80 g·m-2, respectively, for liquid clouds and 8.3 km, 12.7, 52.2 μm, and 230 g·m-2 for ice clouds. Cloud droplet effective radius is greater over ocean than land and has a pronounced seasonal cycle over southern oceans. Comparisons with independent measurements from surface sites, the Ice Cloud and Land Elevation Satellite, and the Aqua Advanced Microwave Scanning Radiometer-Earth Observing System are used to evaluate the results. The mean CERES and MODIS Atmosphere Science Team cloud properties have many similarities but exhibit large discrepancies in certain parameters due to differences in the algorithms and the number of unretrieved cloud pixels. Problem areas in the CERES algorithms are identified and discussed.


Remote Sensing | 2004

CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua

Patrick Minnis; David F. Young; Sunny Sun-Mack; Patrick W. Heck; David R. Doelling; Qing Z. Trepte

The micro- and macrophysical properties of clouds play a crucial role in Earth’s radiation budget. The NASA Clouds and Earth’s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.


Proceedings of SPIE, the International Society for Optical Engineering | 2008

Near-real time cloud retrievals from operational and research meteorological satellites

Patrick Minnis; Louis Nguyen; Rabindra Palikonda; Patrick W. Heck; Douglas A. Spangenberg; David R. Doelling; J. Kirk Ayers; William L. Smith; M. M. Khaiyer; Qing Z. Trepte; Lance A. Avey; Fu-Lung Chang; Chris R. Yost; Thad Chee; Sun-Mack Szedung

A set of cloud retrieval algorithms developed for CERES and applied to MODIS data have been adapted to analyze other satellite imager data in near-real time. The cloud products, including single-layer cloud amount, top and base height, optical depth, phase, effective particle size, and liquid and ice water paths, are being retrieved from GOES- 10/11/12, MTSAT-1R, FY-2C, and Meteosat imager data as well as from MODIS. A comprehensive system to normalize the calibrations to MODIS has been implemented to maximize consistency in the products across platforms. Estimates of surface and top-of-atmosphere broadband radiative fluxes are also provided. Multilayered cloud properties are retrieved from GOES-12, Meteosat, and MODIS data. Native pixel resolution analyses are performed over selected domains, while reduced sampling is used for full-disk retrievals. Tools have been developed for matching the pixel-level results with instrumented surface sites and active sensor satellites. The calibrations, methods, examples of the products, and comparisons with the ICESat GLAS lidar are discussed. These products are currently being used for aircraft icing diagnoses, numerical weather modeling assimilation, and atmospheric radiation research and have potential for use in many other applications.


Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space | 2003

Daytime and nighttime polar cloud and snow identification using MODIS data

Qing Z. Trepte; Patrick Minnis; Robert F. Arduini

The Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, with its high horizontal resolution and frequent sampling over Arctic and Antarctic regions, provides unique data sets to study clouds and the surface energy balance over snow and ice surfaces. This paper describes a polar cloud mask using MODIS data. The daytime cloud and snow identification methods were developed using theoretical snow bi-directional reflectance models for the MODIS 1.6 and 3.75 micron channels. The model-based polar cloud mask minimizes the need for empirically adjusting the thresholds for a given set of conditions and reduces the error accrued from using single-value thresholds. During night, the MODIS brightness temperature differences (BTD) for 3.75 - 11, 3.75 - 12, 8.55 - 11, and 6.7 - 11 micron are used to detect clouds while snow and ice maps are used to determine snow and ice surfaces. At twilight, the combination of the 1.6 micron reflectance and the 3.75 - 11 micron BTD are used to detect clouds. Examples of the cloud mask results from daytime, nighttime, and twilight data show good agreement with visual interpretation of the imagery. Comparisons of the modeled and observed reflectances for clear snow areas reveal good agreement at 1.6 micron, but 10 - 35% overestimates of the 3.75 micron reflectance by the model. Over the Arctic, the modeled visible reflectance is significantly greater than the observed values. Better agreement is obtained over the Antarctic where snow melt is less significant.


Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space | 2003

Global cloud database from VIRS and MODIS for CERES

Patrick Minnis; David F. Young; Bruce A. Wielicki; Sunny Sun-Mack; Qing Z. Trepte; Yan Chen; Patrick W. Heck; Xiquan Dong

The NASA CERES Project has developed a combined radiation and cloud property dataset using the CERES scanners and matched spectral data from high-resolution imagers, the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The diurnal cycle can be well-characterized over most of the globe using the combinations of TRMM, Aqua, and Terra data. The cloud properties are derived from the imagers using state-of-the-art methods and include cloud fraction, height, optical depth, phase, effective particle size, emissivity, and ice or liquid water path. These cloud products are convolved into the matching CERES fields of view to provide simultaneous cloud and radiation data at an unprecedented accuracy. Results are available for at least 3 years of VIRS data and 1 year of Terra MODIS data. The various cloud products are compared with similar quantities from climatological sources and instantaneous active remote sensors. The cloud amounts are very similar to those from surface observer climatologies and are 6-7% less than those from a satellite-based climatology. Optical depths are 2-3 times smaller than those from the satellite climatology, but are within 5% of those from the surface remote sensing. Cloud droplet sizes and liquid water paths are within 10% of the surface results on average for stratus clouds. The VIRS and MODIS retrievals are very consistent with differences that usually can be explained by sampling, calibration, or resolution differences. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.


Proceedings of SPIE, the International Society for Optical Engineering | 2006

NASA-Langley web-based operational real-time cloud retrieval products from geostationary satellites

Rabindra Palikonda; Patrick Minnis; Douglas A. Spangenberg; M. M. Khaiyer; Michele L. Nordeen; J. K. Ayers; Louis Nguyen; Yuhong Yi; P. K. Chan; Qing Z. Trepte; Fu-Lung Chang; William L. Smith

At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.


Remote Sensing | 2007

Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

Sunny Sun-Mack; Patrick Minnis; Yan Chen; Sharon Gibson; Yuhong Yi; Qing Z. Trepte; Bruce A. Wielicki; Seiji Kato; D. M. Winker; Graeme L. Stephens; Philip T. Partain

This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earths Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.


international geoscience and remote sensing symposium | 2006

A Multi-Year Data Set of Cloud Properties Derived for CERES from Aqua, Terra, and TRMM

Patrick Minnis; Patrick W. Heck; Sunny Sun-Mack; Qing Z. Trepte; Yan Chen; Ricky R. Brown; Sharon Gibson; Xiquan Dong; Baike Xi

The clouds and Earths radiant energy system (CERES) project is producing a suite of cloud properties from high-resolution imagers on several satellites and matching them precisely with broadband radiance data to study the influence of clouds and radiation on climate. The cloud properties generally compare well with independent validation sources. Distinct differences are found between the CERES cloud properties and those derived with other algorithms from the same imager data. CERES products will be updated beginning in late 2006.


IEEE Transactions on Geoscience and Remote Sensing | 2008

Cloud Detection in Nonpolar Regions for CERES Using TRMM VIRS and Terra and Aqua MODIS Data

Patrick Minnis; Qing Z. Trepte; Szedung Sun-Mack; Yan Chen; David R. Doelling; David F. Young; Douglas A. Spangenberg; Walter F. Miller; Bruce A. Wielicki; Ricky R. Brown; Sharon Gibson; Erika B. Geier

Collaboration


Dive into the Qing Z. Trepte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunny Sun-Mack

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Chen

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis Nguyen

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Sharon Gibson

Science Applications International Corporation

View shared research outputs
Researchain Logo
Decentralizing Knowledge