Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qinggong Yuan is active.

Publication


Featured researches published by Qinggong Yuan.


American Journal of Pathology | 2009

Repopulation Efficiencies of Adult Hepatocytes, Fetal Liver Progenitor Cells, and Embryonic Stem Cell-Derived Hepatic Cells in Albumin-Promoter-Enhancer Urokinase-Type Plasminogen Activator Mice

Dhivya Haridass; Qinggong Yuan; Pablo D. Becker; Tobias Cantz; Marcus Iken; Michael Rothe; Nidhi Narain; Michael Bock; Miriam Nörder; Nicolas Legrand; Heiner Wedemeyer; Kees Weijer; Hergen Spits; Michael P. Manns; Jun Cai; Hongkui Deng; James P. Di Santo; Carlos A. Guzmán; Michael Ott

Fetal liver progenitor cell suspensions (FLPC) and hepatic precursor cells derived from embryonic stem cells (ES-HPC) represent a potential source for liver cell therapy. However, the relative capacity of these cell types to engraft and repopulate a recipient liver compared with adult hepatocytes (HC) has not been comprehensively assessed. We transplanted mouse and human HC, FLPC, and ES-HPC into a new immunodeficient mouse strain (Alb-uPA(tg(+/-))Rag2(-/-)gamma(c)(-/-) mice) and estimated the percentages of HC after 3 months. Adult mouse HC repopulated approximately half of the liver mass (46.6 +/- 8.0%, 1 x 10(6) transplanted cells), whereas mouse FLPC derived from day 13.5 and 11.5 post conception embryos generated only 12.1 +/- 3.0% and 5.1 +/- 1.1%, respectively, of the recipient liver and smaller cell clusters. Adult human HC and FLPC generated overall less liver tissue than mouse cells and repopulated 10.0 +/- 3.9% and 2.7 +/- 1.1% of the recipient livers, respectively. Mouse and human ES-HPC did not generate HC clusters in our animal model. We conclude that, in contrast to expectations, adult HC of human and mouse origin generate liver tissue more efficiently than cells derived from fetal tissue or embryonic stem cells in a highly immunodeficient Alb-uPA transgenic mouse model system. These results have important implications in the context of selecting the optimal strategy for human liver cell therapies.


Hepatology | 2013

MicroRNA‐221 overexpression accelerates hepatocyte proliferation during liver regeneration

Qinggong Yuan; Komal Loya; Bhavna Rani; Selina Möbus; Asha Balakrishnan; Jutta Lamlé; Toni Cathomen; Arndt Vogel; Michael P. Manns; Michael Ott; Tobias Cantz; Amar Deep Sharma

The tightly controlled replication of hepatocytes in liver regeneration and uncontrolled proliferation of tumor cells in hepatocellular carcinoma (HCC) are often modulated by common regulatory pathways. Several microRNAs (miRNAs) are involved in HCC progression by modulating posttranscriptional expression of multiple target genes. miR‐221, which is frequently up‐regulated in HCCs, delays fulminant liver failure in mice by inhibiting apoptosis, indicating a pleiotropic role of miR‐221 in hepatocytes. Here, we hypothesize that modulation of miR‐221 targets in primary hepatocytes enhances proliferation, providing novel clues for enhanced liver regeneration. We demonstrate that miR‐221 enhances proliferation of in vitro cultivated primary hepatocytes. Furthermore, applying two‐thirds partial hepatectomy as a surgically induced liver regeneration model we show that adeno‐associated virus‐mediated overexpression of miR‐221 in the mouse liver also accelerates hepatocyte proliferation in vivo. miR‐221 overexpression leads to rapid S‐phase entry of hepatocytes during liver regeneration. In addition to the known targets p27 and p57, we identify Aryl hydrocarbon nuclear translocator (Arnt) messenger RNA (mRNA) as a novel target of miR‐221, which contributes to the pro‐proliferative activity of miR‐221. Conclusion: miR‐221 overexpression accelerates hepatocyte proliferation. Pharmacological intervention targeting miR‐221 may thus be therapeutically beneficial in liver failure by preventing apoptosis and by inducing liver regeneration. (HEPATOLOGY 2013;)


Blood | 2013

Specific gene delivery to liver sinusoidal and artery endothelial cells

Tobias Abel; Ebtisam El Filali; Johan Waern; Irene C. Schneider; Qinggong Yuan; Robert C. Münch; Meike Hick; G. Warnecke; N. Madrahimov; Roland E. Kontermann; Jörg Schüttrumpf; Ulrike Müller; Jurgen Seppen; Michael Ott; Christian J. Buchholz

Different types of endothelial cells (EC) fulfill distinct tasks depending on their microenvironment. ECs are therefore difficult to genetically manipulate ex vivo for functional studies or gene therapy. We assessed lentiviral vectors (LVs) targeted to the EC surface marker CD105 for in vivo gene delivery. The mouse CD105-specific vector, mCD105-LV, transduced only CD105-positive cells in primary liver cell cultures. Upon systemic injection, strong reporter gene expression was detected in liver where mCD105-LV specifically transduced liver sinusoidal ECs (LSECs) but not Kupffer cells, which were mainly transduced by nontargeted LVs. Tumor ECs were specifically targeted upon intratumoral vector injection. Delivery of the erythropoietin gene with mCD105-LV resulted in substantially increased erythropoietin and hematocrit levels. The human CD105-specific vector (huCD105-LV) transduced exclusively human LSECs in mice transplanted with human liver ECs. Interestingly, when applied at higher dose and in absence of target cells in the liver, huCD105-LV transduced ECs of a human artery transplanted into the descending mouse aorta. The data demonstrate for the first time targeted gene delivery to specialized ECs upon systemic vector administration. This strategy offers novel options to better understand the physiological functions of ECs and to treat genetic diseases such as those affecting blood factors.


Journal of Hepatology | 2015

MicroRNA-199a-5p inhibition enhances the liver repopulation ability of human embryonic stem cell-derived hepatic cells

Selina Möbus; Dakai Yang; Qinggong Yuan; Timo H.-W. Lüdtke; Asha Balakrishnan; Malte Sgodda; Bhavna Rani; Andreas Kispert; Marcos J. Araúzo-Bravo; Arndt Vogel; Michael P. Manns; Michael Ott; Tobias Cantz; Amar Deep Sharma

BACKGROUND & AIMS Current hepatic differentiation protocols for human embryonic stem cells (ESCs) require substantial improvements. MicroRNAs (miRNAs) have been reported to regulate hepatocyte cell fate during liver development, but their utility to improve hepatocyte differentiation from ESCs remains to be investigated. Therefore, our aim was to identify and to analyse hepatogenic miRNAs for their potential to improve hepatocyte differentiation from ESCs. METHODS By miRNA profiling and in vitro screening, we identified miR-199a-5p among several potential hepatogenic miRNAs. Transplantation studies of miR-199a-5p-inhibited hepatocyte-like cells (HLCs) in the liver of immunodeficient fumarylacetoacetate hydrolase knockout mice (Fah(-/-)/Rag2(-/-)/Il2rg(-/-)) were performed to assess their in vivo liver repopulation potential. For target determination, western blot and luciferase reporter assay were carried out. RESULTS miRNA profiling revealed 20 conserved candidate hepatogenic miRNAs. By miRNA screening, only miR-199a-5p inhibition in HLCs was found to be able to enhance the in vitro hepatic differentiation of mouse as well as human ESCs. miR-199a-5p inhibition in human ESCs-derived HLCs enhanced their engraftment and repopulation capacity in the liver of Fah(-/-)/Rag2(-/-)/Il2rg(-/-) mice. Furthermore, we identified SMARCA4 and MST1 as novel targets of miR-199a-5p that may contribute to the improved hepatocyte generation and in vivo liver repopulation. CONCLUSIONS Our findings demonstrate that miR-199a-5p inhibition in ES-derived HLCs leads to improved hepatocyte differentiation. Upon transplantation, HLCs were able to engraft and repopulate the liver of Fah(-/-)/Rag2(-/-)/Il2rg(-/-) mice. Thus, our findings suggest that miRNA modulation may serve as a promising approach to generate more mature HLCs from stem cell sources for the treatment of liver diseases.


Hepatology | 2012

Ectopic expression of murine CD47 minimizes macrophage rejection of human hepatocyte xenografts in immunodeficient mice

Johan Waern; Qinggong Yuan; Urda Rüdrich; Pablo D. Becker; Kai Schulze; Helene Strick-Marchand; Nicholas D. Huntington; Behrend J. Zacher; Karsten Wursthorn; James P. DiSanto; Carlos A. Guzmán; Michael P. Manns; Michael Ott; Michael Bock

Macrophages play an important role in the rejection of xenogeneic cells and therefore represent a major obstacle to generating chimeric mice with human xenografts that are useful tools for basic and preclinical medical research. The signal inhibitory regulatory protein α (SIRPα) receptor is a negative regulator of macrophage phagocytic activity and interacts in a species‐specific fashion with its ligand CD47. Furthermore, SIRPα polymorphism in laboratory mouse strains significantly affects the extent of human CD47‐mediated toleration of human xenotransplants. Aiming to minimize macrophage activity and thus optimize human cell engraftment in immunodeficient mice, we lentivirally transduced murine CD47 (Cd47) into human liver cells. Human HepG2 liver cells expressing Cd47 were less frequently contacted and phagocytosed by murine RAW264.7 macrophages in vitro than their Cd47‐negative counterparts. For the generation of human‐mouse chimeric livers in immunodeficient BALB‐ΔRAG/γc‐uPA (urokinase‐type plasminogen activator) mice, freshly thawed cryopreserved human hepatocytes were transduced with a lentiviral expression vector for Cd47 using a refined in vitro transduction protocol immediately before transplantation. In vivo, Cd47‐positive human primary hepatocytes were selectively retained following engraftment in immunodeficient mice, leading to at least a doubling of liver repopulation efficiencies. Conclusion: We conclude that ectopic expression of murine Cd47 in human hepatocytes selectively favors engraftment upon transplantation into mice, a finding that should have a profound impact on the generation of robust humanized small animal models. Moreover, dominance of ectopically expressed murine Cd47 over endogenous human CD47 should also widen the spectrum of immunodeficient mouse strains suitable for humanization. (HEPATOLOGY 2012)


Nature Communications | 2016

MicroRNA-125b-5p mimic inhibits acute liver failure

Dakai Yang; Qinggong Yuan; Asha Balakrishnan; Heike Bantel; Jan-Henning Klusmann; Michael P. Manns; Michael Ott; Tobias Cantz; Amar Deep Sharma

The lack of broad-spectrum anti-acute liver failure (ALF) therapeutic agents contributes to ALF-related mortality. MicroRNAs (miRNAs) are suggested to be potent serum biomarkers for ALF, but their functional and therapeutic relevance in ALF are unclear. Here we show an unbiased approach, using two complementary miRNA screens, to identify miRNAs that can attenuate ALF. We identify miR-125b-5p as a regulator of cell death that attenuates paracetamol-induced and FAS-induced toxicity in mouse and human hepatocytes. Importantly, administration of miR-125b-5p mimic in mouse liver prevents injury and improves survival in models of ALF. Functional studies show that miR-125b-5p ameliorates ALF by directly regulating kelch-like ECH-associated protein 1, in turn elevating expression of nuclear factor-E2-related factor 2, a known regulator in ALF. Collectively, our findings establish miR-125b-5p as an important regulator of paracetamol-induced and FAS-induced cell death. Thus, miR-125b-5p mimic may serve as a broad-spectrum therapeutic attenuator of cell death during ALF.


Journal of Virology | 2015

Control of Hepatitis C Virus Replication in Mouse Liver-Derived Cells by MAVS-Dependent Production of Type I and Type III Interferons

Anggakusuma; Anne Frentzen; Engin Gürlevik; Qinggong Yuan; Eike Steinmann; Michael Ott; Peter Staeheli; Jonathan L. Schmid-Burgk; Tobias Schmidt; Veit Hornung; Florian Kuehnel; Thomas Pietschmann

ABSTRACT Hepatitis C virus (HCV) efficiently infects only humans and chimpanzees. Although the detailed mechanisms responsible for this narrow species tropism remain elusive, recent evidence has shown that murine innate immune responses efficiently suppress HCV replication. Therefore, poor adaptation of HCV to evade and/or counteract innate immune responses may prevent HCV replication in mice. The HCV NS3-4A protease cleaves human MAVS, a key cellular adaptor protein required for RIG-I-like receptor (RLR)-dependent innate immune signaling. However, it is unclear if HCV interferes with mouse MAVS function equally well. Moreover, MAVS-dependent signaling events that restrict HCV replication in mouse cells were incompletely defined. Thus, we quantified the ability of HCV NS3-4A to counteract mouse and human MAVS. HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Moreover, replicon-encoded protease cleaved a similar fraction of both MAVS variants. Finally, FLAG-tagged MAVS proteins repressed HCV replication to similar degrees. Depending on MAVS expression, HCV replication in mouse liver cells triggered not only type I but also type III IFNs, which cooperatively repressed HCV replication. Mouse liver cells lacking both type I and III IFN receptors were refractory to MAVS-dependent antiviral effects, indicating that the HCV-induced MAVS-dependent antiviral state depends on both type I and III IFN receptor signaling. IMPORTANCE In this study, we found that HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Therefore, it is unlikely that ineffective cleavage of mouse MAVS per se precludes HCV propagation in immunocompetent mouse liver cells. Hence, approaches to reinforce HCV replication in mouse liver cells (e.g., by expression of essential human replication cofactors) should not be thwarted by the poor ability of HCV to counteract MAVS-dependent antiviral signaling. In addition, we show that mouse MAVS induces both type I and type III IFNs, which together control HCV replication. Characterization of type I or type III-dependent interferon-stimulated genes in these cells should help to identify key murine restriction factors that preclude HCV propagation in immunocompetent mouse liver cells.


Molecular Therapy | 2016

Generation of genetically engineered precursor T cells from human umbilical cord blood using an optimized alpharetroviral vector platform.

Juwita Hübner; Shahabuddin S Hoseini; Julia D. Suerth; Dirk Hoffmann; Marcel Maluski; Jessica Herbst; Holger Maul; Arnab Ghosh; Britta Eiz-Vesper; Qinggong Yuan; Michael Ott; Michael Heuser; Axel Schambach; Martin G. Sauer

Retroviral engineering of hematopoietic stem cell-derived precursor T-cells (preTs) opens the possibility of targeted T-cell transfer across human leukocyte antigen (HLA)-barriers. Alpharetroviral vectors exhibit a more neutral integration pattern thereby reducing the risk of insertional mutagenesis. Cord blood-derived CD34+ cells were transduced and differentiated into preTs in vitro. Two promoters, elongation-factor-1-short-form, and a myeloproliferative sarcoma virus variant in combination with two commonly used envelopes were comparatively assessed choosing enhanced green fluorescent protein or a third-generation chimeric antigen receptor (CAR) against CD123 as gene of interest. Furthermore, the inducible suicide gene iCaspase 9 has been validated. Combining the sarcoma virus-derived promoter with a modified feline endogenous retrovirus envelope glycoprotein yielded in superior transgene expression and transduction rates. Fresh and previously frozen CD34+ cells showed similar transduction and expansion rates. Transgene-positive cells did neither show proliferative impairment nor alteration in their lymphoid differentiation profile. The sarcoma virus-derived promoter only could express sufficient levels of iCaspase 9 to mediate dimerizer-induced apoptosis. Finally, the CD123 CAR was efficiently expressed in CD34+ cells and proved to be functional when expressed on differentiated T-cells. Therefore, the transduction of CD34+ cells with alpharetroviral vectors represents a feasible and potentially safer approach for stem cell-based immunotherapies for cancer.


Nature Communications | 2018

Expansion of functional personalized cells with specific transgene combinations

Christoph Lipps; Franziska Klein; Tom Wahlicht; Virginia Seiffert; Milada Butueva; Jeannette Zauers; Theresa Truschel; Martin Luckner; Mario Köster; Roderick A. F. MacLeod; Jörn Pezoldt; Jochen Hühn; Qinggong Yuan; Peter P. Müller; Henning Kempf; Robert Zweigerdt; Oliver Dittrich-Breiholz; Thomas Pufe; Rainer Beckmann; Wolf Drescher; José A. Riancho; Carolina Sañudo; Thomas Korff; Bertram Opalka; Vera Rebmann; Joachim R. Göthert; Paula M. Alves; Michael Ott; Roland Schucht; Hansjörg Hauser

Fundamental research and drug development for personalized medicine necessitates cell cultures from defined genetic backgrounds. However, providing sufficient numbers of authentic cells from individuals poses a challenge. Here, we present a new strategy for rapid cell expansion that overcomes current limitations. Using a small gene library, we expanded primary cells from different tissues, donors, and species. Cell-type-specific regimens that allow the reproducible creation of cell lines were identified. In depth characterization of a series of endothelial and hepatocytic cell lines confirmed phenotypic stability and functionality. Applying this technology enables rapid, efficient, and reliable production of unlimited numbers of personalized cells. As such, these cell systems support mechanistic studies, epidemiological research, and tailored drug development.Personalised medicine requires cell cultures from defined genetic backgrounds, but providing sufficient numbers of cells is a challenge. Here the authors develop gene cocktails to expand primary cells from a variety of different tissues and species, and show that expanded endothelial and hepatic cells retain properties of the differentiated phenotype.


World Journal of Hepatology | 2018

Homologous recombination mediates stable Fah gene integration and phenotypic correction in tyrosinaemia mouse-model

Qinggong Yuan; Thu Huong Vu; Simon Krooss; Christien Bednarski; Asha Balakrishnan; Toni Cathomen; Michael P. Manns; Ulrich Baumann; Amar Deep Sharma; Michael Ott

AIM To stably correct tyrosinaemia in proliferating livers of fumarylacetoacetate-hydrolase knockout (Fah-/-) mice by homologous-recombination-mediated targeted addition of the Fah gene. METHODS C57BL/6 Fah∆exon5 mice served as an animal model for human tyrosinaemia type 1 in our study. The vector was created by amplifying human Fah cDNA including the TTR promoter from a lentivirus plasmid as described. The Fah expression cassette was flanked by homologous arms (620 bp and 749 bp long) of the Rosa26 gene locus. Mice were injected with 2.1 × 108 VP of this vector (rAAV8-ROSA26.HAL-TTR.Fah-ROSA26.HAR) via the tail vein. Mice in the control group were injected with 2.1 × 108 VP of a similar vector but missing the homologous arms (rAAV8-TTR.Fah). Primary hepatocytes from Fah-/- recipient mice, treated with our vectors, were isolated and 1 × 106 hepatocytes were transplanted into secondary Fah-/- recipient mice by injection into the spleen. Upon either vector application or hepatocyte transplantation NTBC treatment was stopped in recipient mice. RESULTS Here, we report successful HR-mediated genome editing by integration of a Fah gene expression cassette into the “safe harbour locus” Rosa26 by recombinant AAV8. Both groups of mice showed long-term survival, weight gain and FAH positive clusters as determined by immunohistochemistry analysis of liver sections in the absence of NTBC treatment. In the group of C57BL/6 Fah∆exon5 mice, which have been transplanted with hepatocytes from a mouse injected with rAAV8-ROSA26.HAL-TTR.Fah-ROSA26.HAR 156 d before, 6 out of 6 mice showed long-term survival, weight gain and FAH positive clusters without need for NTBC treatment. In contrast only 1 out 5 mice, who received hepatocytes from rAAV8-TTR.Fah treated mice, survived and showed few and smaller FAH positive clusters. These results demonstrate that homologous recombination-mediated Fah gene transfer corrects the phenotype in a mouse model of human tyrosinaemia type 1 (Fah-/- mice) and is long lasting in a proliferating state of the liver as shown by withdrawal of NTBC treatment and serial transplantation of isolated hepatocytes from primary Fah-/- recipient mice into secondary Fah-/- recipient mice. This long term therapeutic efficacy is clearly superior to our control mice treated with episomal rAAV8 gene therapy approach. CONCLUSION HR-mediated rAAV8 gene therapy provides targeted transgene integration and phenotypic correction in Fah-/- mice with superior long-term efficacy compared to episomal rAAV8 therapy in proliferating livers.

Collaboration


Dive into the Qinggong Yuan's collaboration.

Top Co-Authors

Avatar

Michael Ott

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Cantz

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Dakai Yang

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Arndt Vogel

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhavna Rani

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge