Qingguang Ren
Fudan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qingguang Ren.
International Journal of Pharmaceutics | 2011
Hongyan Tang; Jia Guo; Yang Sun; Baisong Chang; Qingguang Ren; Wuli Yang
pH-responsive polymer shell chitosan/poly (methacrylic acid) (CS-PMAA) was coated on mesoporous silica nanoparticles (MSN) through the facile in situ polymerization method. The resultant composite microspheres showed a flexible control over shell thickness, surface charges and hydrodynamic size by adjusting the feeding amount of MSN and the molar ratio of [-NH(2)]/MAA. The MSN/CS-PMAA composite microspheres were stable in the pH range of 5-8 as well as in the physiological saline (0.15M NaCl). Doxorubicin hydrochloride (DOX) was applied as a model drug to investigate the drug storage and release behavior. The results demonstrated that DOX could be effectively loaded into the composite microspheres. The cumulative release of DOX-loaded composite microspheres was pH dependent and the release rate was much faster at low pH (5.5) than that of pH 7.4. The cytotoxicity test by MTT assay showed that the blank carrier MSN/CS-PMAA microspheres were suitable as drug carriers. The cellular uptake of composite microspheres was investigated by confocal laser scanning microscopy (CLSM), which indicated that MSN/CS-PMAA could deliver the drugs into HeLa cell. The above results imply that the composite microspheres are a promising drug delivery system for cancer therapy.
Cancer Letters | 2003
Wu Sm; Qingguang Ren; M.O. Zhou; Qian Peng; Ji-Yao Chen
5-Aminolevulinic acid (ALA) has shown promising in photodynamic detection and therapy of brain tumor. However, the knowledge on selective accumulation of ALA-induced protoporphyrin IX (PpIX) in brain tumor tissue is still fragment. In the present study, the rat C6 glioma cells, human SK-N-SH neuroblastoma cells, and rat normal cerebellar granule cells (RCG) were used to investigate the PpIX production and photocytotoxicity in vitro. The C6 cells and SK-N-SH cells showed a similar kinetics of PpIX accumulation after exposure to ALA or ALA hexyl ester (ALA-H), with an initial increase up to 6-8 h and then saturated. In the case of RCG cells, the PpIX accumulation slowly increased until 12 h studied. However the cellular PpIX content was more than 10 times higher in the C6 and SK-N-SH cells than that in the normal RCG cells. The intracellular localization of PpIX measured by cofocal laser scanning microscopy was in same pattern in the C6 glioma cells and RCG normal cells with a diffuse cytoplasm distribution. The sensitivity of the C6 cells and SK-N-SH cells to ALA or ALA-H PDT was similar. It appears that ALA-H could achieve similar or slightly better results than ALA with respect to PpIX production and photoinactivation of cells, although a 10 times lower concentration of ALA-H was used.
Small | 2015
Yunfeng Jiao; Yangfei Sun; Xiaoling Tang; Qingguang Ren; Wuli Yang
The development of theranostic systems capable of diagnosis, therapy, and target specificity is considerably significant for accomplishing personalized medicine. Here, a multifunctional rattle-type nanoparticle (MRTN) as an effective biological bimodal imaging and tumor-targeting delivery system is fabricated, and an enhanced loading ability of hydrophobic anticancer drug (paclitaxel) is also realized. The rattle structure with hydrophobic Fe3 O4 as the inner core and mesoporous silica as the shell is obtained by one-step templates removal process, and the size of interstitial hollow space can be easily adjusted. The Fe3 O4 core with hydrophobic poly(tert-butyl acrylate) (PTBA) chains on the surface is not only used as a magnetic resonance imaging (MRI) agent, but contributes to improving hydrophobic drug loading amount. Transferrin (Tf) and a near-infrared fluorescent dye (Cy 7) are successfully modified on the surface of the nanorattle to increase the ability of near-infrared fluorescence (NIRF) imaging and tumor-targeting specificity. In vivo studies show the selective accumulation of MRTN in tumor tissues by Tf-receptor-mediated endocytosis. More importantly, paclitaxel-loaded MRTN shows sustained release character and higher cytotoxicity than the free paclitaxel. This theranostic nanoparticle as an effective MRI/NIRF bimodal imaging probe and drug delivery system shows great potential in cancer diagnosis and therapy.
Journal of Colloid and Interface Science | 2012
Baisong Chang; Xurui Zhang; Jia Guo; Yang Sun; Hongyan Tang; Qingguang Ren; Wuli Yang
A general and facile strategy was developed to coat hydrophilic inorganic nanoparticles directly with mesoporous silica nanoparticles (MSNs). The cationic surfactant of cetyltrimethylammonium bromide (CTAB) was adsorbed to various negatively charged CdTe quantum dots, Fe(3)O(4) nanocrystals or Au nanoparticles, introducing the bilayer of CTAB overcoating with positive charge. The subsequent sol-gel reaction of TEOS with the basic catalyst resulted in uniform nanocomposites. The concentration of CTAB and NH(4)OH in the recipe strongly influenced the number of inorganic nanoparticles in the nanocomposites and the homogeneity of MSNs shell. One dimensional Au nanorods and larger size of solid SiO(2) nanoparticles were also able to coat with MSNs using a similar synthetic procedure. The proposed method was greatly simplified without the help of any mediators or silane coupling agents and excellent mesostructural performance was readily achieved. Compared to the methods known from the literatures for the coating of hydrophobic nanoparticles, this efficient way is especially useful for trapping different hydrophilic nanoparticles with arbitrary sizes and shapes into MSNs. These highly versatile multifunctional nanocomposites, together with the pH-responsible drug release behaviors, non-toxicity to normal cells and ease of uptake into cancer cells, are expected to be utilized as drug delivery system for simultaneous imaging and therapeutic applications.
Nanotechnology | 2009
Minglei Ji; Wuli Yang; Qingguang Ren; Daru Lu
In order to enhance the dispersion ability of hydrophobic nanoparticles in water while maintaining their unique properties, we utilized poly(ethylene glycol) grafted hyperbranched poly(amido amine) (h-PAMAM-g-PEG) to modify three types of hydrophobic nanoparticle, CdSe, Au, and Fe(3)O(4), and transferred them into water to extend their applications in biology. Considering the large amounts of amino groups in hyperbranched poly(amido amine) (h-PAMAM) polymer, complexation interaction between h-PAMAM-g-PEG copolymer and nanoparticles was achieved and ligand exchange between the copolymers and original small molecules ligands occurred. The transferred nanoparticles could be easily dispersed in water with better stability, and their unique properties, such as fluorescence, surface plasmon resonance, and superparamagnetism, were well maintained in the ligand exchange process. In addition, increasing the number of grafted PEG showed a negative effect on the ligand exchange process. Due to the existence of h-PAMAM-g-PEG ligands, the stabilized nanoparticles have improved stability in aqueous and ionic solutions. In the case of CdSe nanoparticles, the h-PAMAM-g-PEG layer leads to a lower cytotoxicity when compared with bare CdSe particles, and they could be directly used in bioimaging.
Journal of Colloid and Interface Science | 2013
Zhipeng Ran; Yang Sun; Baisong Chang; Qingguang Ren; Wuli Yang
Nonporous silica transitional approach was employed to create core-shell architectural nanocomposites, which performed particularly well in morphology and controllable synthesis. The silica nanocomposites containing fluorescent solid SiO2 core and mesoporous silica shell (F-nSiO2/mSiO2) presented distinct structures of narrow size distribution, stable and shell thickness independent fluorescence, and high specific surface area. Furthermore, the thickness of mesoporous shell could be precisely tailored by the amount of TEOS and solid SiO2 seeds. Drug delivery study of F-nSiO2/mSiO2 with different mesoporous thicknesses were carried out, and Peppas equation was adopted to demonstrate the controlled releasing mechanism of doxorubicin (DOX). The diffusion rate of DOX from F-nSiO2/mSiO2 nanocomposites depended on the thickness of mesoporous shell and electrostatic interaction between drug and silanol group, which facilitated an enhanced drug releasing activity at pH 5.5 than 7.4. Whats more, particles loaded DOX showed similar cytotoxicity compared with pure DOX, while no obvious cytotoxicity of carrier was observed in MTT tests for blank particles. These characteristics mentioned above implied that core/shell structured F-nSiO2/mSiO2 had a great potential for controlled drug delivery system.
Iet Nanobiotechnology | 2015
Yong Li; Xiaoling Tang; Wenshuang Song; Lina Zhu; Xingang Liu; Xiaomin Yan; Chengzhi Jin; Qingguang Ren
Extracellular and intracellular biosynthesis of silver nanoparticles (AgNPs) by Euglena gracilis (EG) strain and Euglena intermedia (EI) strain are reported in this study. The obtained nanoparticles showed an absorption peak approximates 420 nm in the UV-visible spectrum, corresponding to the plasmon resonance of AgNPs. According to the result of inductively coupled plasma-atomic emission spectrometer, the intakes of silver ions by EI and EG are roughly equal. The transmission electron microscope (TEM) analysis of the successful in vivo and in vitro synthesised AgNPs indicated the sizes, ranging from 6 to 24 nm and 15 to 60 nm in diameter, respectively, and a spherical-shaped polydispersal of the particles. The successful formation of AgNPs has been confirmed by energy dispersive X-ray analysis connected to the TEM. The Fourier transform infrared spectroscopy measurements reveal the presence of bioactive functional groups such as amines are found to be the capping and stabilising agents of nanoparticles. To our knowledge, this is the first report where two kinds of Euglena microalga were used as the potential source for in vivo and in vitro biosynthesis of AgNPs.
Particle & Particle Systems Characterization | 2015
Yefei Tian; Jin Zheng; Xiaoling Tang; Qingguang Ren; Yajun Wang; Wuli Yang
Acta Biochimica et Biophysica Sinica | 2003
Wu Sm; Qingguang Ren; Ming Zhou; Wei Y; Ji-Yao Chen
Chinese Journal of Chemistry | 2013
Yang Sun; Zhipeng Ran; Hongyan Tang; Yong Li; Wenshuang Song; Qingguang Ren; Wuli Yang; Jilie Kong