Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qinghua Nie is active.

Publication


Featured researches published by Qinghua Nie.


Journal of Genetics and Genomics | 2013

MicroRNAs Involved in Skeletal Muscle Differentiation

Wen Luo; Qinghua Nie; Xiquan Zhang

MicroRNAs (miRNAs) negatively regulate gene expression by promoting degradation of target mRNAs or inhibiting their translation. Previous studies have expanded our understanding that miRNAs play an important role in myogenesis and have a big impact on muscle mass, muscle fiber type and muscle-related diseases. The muscle-specific miRNAs, miR-206, miR-1 and miR-133, are among the most studied and best characterized miRNAs in skeletal muscle differentiation. They have a profound influence on multiple muscle differentiation processes, such as alternative splicing, DNA synthesis, and cell apoptosis. Many non-muscle-specific miRNAs are also required for the differentiation of muscle through interaction with myogenic factors. Studying the regulatory mechanisms of these miRNAs in muscle differentiation will extend our knowledge of miRNAs in muscle biology and will improve our understanding of the myogenesis regulation.


PLOS ONE | 2012

Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits.

Liang Xie; Chenglong Luo; Chengguang Zhang; Rong Zhang; Jun Tang; Qinghua Nie; Li Ma; Xiaoxiang Hu; Ning Li; Yang Da; Xiquan Zhang

Chicken growth traits are important economic traits in broilers. A large number of studies are available on finding genetic factors affecting chicken growth. However, most of these studies identified chromosome regions containing putative quantitative trait loci and finding causal mutations is still a challenge. In this genome-wide association study (GWAS), we identified a narrow 1.5 Mb region (173.5–175 Mb) of chicken (Gallus gallus) chromosome (GGA) 1 to be strongly associated with chicken growth using 47,678 SNPs and 489 F2 chickens. The growth traits included aggregate body weight (BW) at 0–90 d of age measured weekly, biweekly average daily gains (ADG) derived from weekly body weight, and breast muscle weight (BMW), leg muscle weight (LMW) and wing weight (WW) at 90 d of age. Five SNPs in the 1.5 Mb KPNA3-FOXO1A region at GGA1 had the highest significant effects for all growth traits in this study, including a SNP at 8.9 Kb upstream of FOXO1A for BW at 22–48 d and 70 d, a SNP at 1.9 Kb downstream of FOXO1A for WW, a SNP at 20.9 Kb downstream of ENSGALG00000022732 for ADG at 29–42 d, a SNP in INTS6 for BW at 90 d, and a SNP in KPNA3 for BMW and LMW. The 1.5 Mb KPNA3-FOXO1A region contained two microRNA genes that could bind to messenger ribonucleic acid (mRNA) of IGF1, FOXO1A and KPNA3. It was further indicated that the 1.5 Mb GGA1 region had the strongest effects on chicken growth during 22–42 d.


DNA Research | 2011

Mutation Bias is the Driving Force of Codon Usage in the Gallus gallus genome

Yousheng Rao; Guozuo Wu; Zhangfeng Wang; Xuewen Chai; Qinghua Nie; Xiquan Zhang

Synonymous codons are used with different frequencies both among species and among genes within the same genome and are controlled by neutral processes (such as mutation and drift) as well as by selection. Up to now, a systematic examination of the codon usage for the chicken genome has not been performed. Here, we carried out a whole genome analysis of the chicken genome by the use of the relative synonymous codon usage (RSCU) method and identified 11 putative optimal codons, all of them ending with uracil (U), which is significantly departing from the pattern observed in other eukaryotes. Optimal codons in the chicken genome are most likely the ones corresponding to highly expressed transfer RNA (tRNAs) or tRNA gene copy numbers in the cell. Codon bias, measured as the frequency of optimal codons (Fop), is negatively correlated with the G + C content, recombination rate, but positively correlated with gene expression, protein length, gene length and intron length. The positive correlation between codon bias and protein, gene and intron length is quite different from other multi-cellular organism, as this trend has been only found in unicellular organisms. Our data displayed that regional G + C content explains a large proportion of the variance of codon bias in chicken. Stepwise selection model analyses indicate that G + C content of coding sequence is the most important factor for codon bias. It appears that variation in the G + C content of CDSs accounts for over 60% of the variation of codon bias. This study suggests that both mutation bias and selection contribute to codon bias. However, mutation bias is the driving force of the codon usage in the Gallus gallus genome. Our data also provide evidence that the negative correlation between codon bias and recombination rates in G. gallus is determined mostly by recombination-dependent mutational patterns.


BMC Genomics | 2012

Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens

Shumao Lin; Hongmei Li; Heping Mu; Wen Luo; Ying Li; Xinzheng Jia; Sibing Wang; Xiaolu Jia; Qinghua Nie; Yugu Li; Xiquan Zhang

BackgroundA deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition.ResultsAt the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3′ untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines.ConclusionsThere is a critical miRNA, let-7b, involved in the regulation of GHR. SOCS3 plays a critical role in regulating skeletal muscle growth and fat deposition via let-7b-mediated GHR expression.


PLOS ONE | 2013

Comparison of the Genome-Wide DNA Methylation Profiles between Fast-Growing and Slow-Growing Broilers

Yongsheng Hu; Haiping Xu; Zhenhui Li; Xuejuan Zheng; Xinzheng Jia; Qinghua Nie; Xiquan Zhang

Introduction Growth traits are important in poultry production, however, little is known for its regulatory mechanism at epigenetic level. Therefore, in this study, we aim to compare DNA methylation profiles between fast- and slow-growing broilers in order to identify candidate genes for chicken growth. Methylated DNA immunoprecipitation-sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation pattern in high and low tails of Recessive White Rock (WRRh; WRRl) and that of Xinhua Chickens (XHh; XHl) at 7 weeks of age. The results showed that the average methylation density was the lowest in CGIs followed by promoters. Within the gene body, the methylation density of introns was higher than that of UTRs and exons. Moreover, different methylation levels were observed in different repeat types with the highest in LINE/CR1. Methylated CGIs were prominently distributed in the intergenic regions and were enriched in the size ranging 200–300 bp. In total 13,294 methylated genes were found in four samples, including 4,085 differentially methylated genes of WRRh Vs. WRRl, 5,599 of XHh Vs. XHl, 4,204 of WRRh Vs. XHh, as well as 7,301 of WRRl Vs. XHl. Moreover, 132 differentially methylated genes related to growth and metabolism were observed in both inner contrasts (WRRh Vs. WRRl and XHh Vs. XHl), whereas 129 differentially methylated genes related to growth and metabolism were found in both across-breed contrasts (WRRh Vs. XHh and WRRl Vs. XHl). Further analysis showed that overall 75 genes exhibited altered DNA methylation in all four contrasts, which included some well-known growth factors of IGF1R, FGF12, FGF14, FGF18, FGFR2, and FGFR3. In addition, we validate the MeDIP-seq results by bisulfite sequencing in some regions. Conclusions This study revealed the global DNA methylation pattern of chicken muscle, and identified candidate genes that potentially regulate muscle development at 7 weeks of age at methylation level.


BMC Genetics | 2008

The PIT1 gene polymorphisms were associated with chicken growth traits

Qinghua Nie; Meixia Fang; Liang Xie; Min Zhou; Zhangmin Liang; Ziping Luo; Guohuang Wang; Wensen Bi; Canjian Liang; Wei Zhang; Xiquan Zhang

BackgroundWith crucial roles on the differentiation of anterior pituitary and the regulation of the prolactin (PRL), growth hormone (GH) and thyroid-stimulating hormone-β (TSH-β) genes, the chicken PIT1 gene is regarded as a key candidate gene for production traits. In this study, five reported polymorphisms (MR1-MR5) of the PIT1 gene were genotyped in a full sib F2 resource population to evaluate their effects on growth, carcass and fatty traits in chickens.ResultsMarker-trait association analyses showed that, MR1 was significantly associated with shank diameters (SD) at 84 days (P < 0.05), hatch weight (HW) and shank length (SL) at 84 days (P < 0.01), MR2 was significantly associated with BW at 28, 42 days and average daily gain (ADG) at 0–4 weeks (P < 0.05), and MR3 was significantly associated with ADG at 4–8 weeks (P < 0.05). MR4 was associated with SL at 63, 77, 84 days and BW at 84 days (P < 0.05), as well as SD at 77 days (P < 0.01). Significant association was also found of MR5 with BW at 21, 35 days and SD at 63 days (P < 0.05), BW at 28 days and ADG at 0–4 weeks (P < 0.01). Both T allele of MR4 and C allele of MR5 were advantageous for chicken growth. The PIT1 haplotypes were significantly associated with HW (P = 0.0252), BW at 28 days (P = 0.0390) and SD at 56 days (P = 0.0400). No significant association of single SNP and haplotypes with chicken carcass and fatty traits was found (P > 0.05).ConclusionOur study found that polymorphisms of PIT1 gene and their haplotypes were associated with chicken growth traits and not with carcass and fatty traits.


Cell Death and Disease | 2014

The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation

W Luo; H Wu; Y Ye; Zhenhui Li; S Hao; L Kong; X Zheng; S Lin; Qinghua Nie; Xiquan Zhang

Previous studies have shown that miR-203 is a skin-specific microRNA (miRNA) with a profound role in skin cell differentiation. However, emerging microarray and deep sequencing data revealed that miR-203 is also expressed in embryonic skeletal muscle and myoblasts. In this study, we found that miR-203 was transiently upregulated in chicken embryos on days 10 to 16 (E10–E16) and was sharply downregulated and even not expressed after E16 in chicken embryonic skeletal muscle. Histological profiles and weight variations of embryo skeletal muscle revealed that miR-203 expression is correlated with muscle development. In vitro experiments showed that miR-203 exhibited downregulated expression during myoblast differentiation into myotubes. miR-203 overexpression inhibited myoblast proliferation and differentiation, whereas its loss-of-function increased myoblast proliferation and differentiation. During myogenesis, miR-203 can target and inhibit the expression of c-JUN and MEF2C, which were important for cell proliferation and muscle development, respectively. The overexpression of c-JUN significantly promoted myoblast proliferation. Conversely, knockdown of c-JUN by siRNA suppressed myoblast proliferation. In addition, the knockdown of MEF2C by siRNA significantly inhibited myoblast differentiation. Altogether, these data not only suggested that the expression of miR-203 is transitory during chicken skeletal muscle development but also showed a novel role of miR-203 in inhibiting skeletal muscle cell proliferation and differentiation by repressing c-JUN and MEF2C, respectively.


BMC Genetics | 2010

The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits.

Haiping Xu; Xu Shen; Min Zhou; Meixia Fang; Hua Zeng; Qinghua Nie; Xiquan Zhang

BackgroundThe elevation of egg production and the inhibition of incubation behavior are the aims of modern poultry production. Prolactin (PRL) gene is confirmed to be critical for the onset and maintenance of these reproductive behaviors in birds. Through PRL, dopamine D1 receptor (DRD1) was also involved in the regulation of chicken reproductive behavior. However, the genetic effects of this gene on chicken egg production and broodiness have not been studied extensively. The objective of this research was to evaluate the genetic effects of the DRD1 gene on chicken egg production and broodiness traits.ResultsIn this study, the chicken DRD1 gene was screened for the polymorphisms by cloning and sequencing and 29 variations were identified in 3,342 bp length of this gene. Seven single nucleotide polymorphism (SNPs) among these variations, including a non-synonymous mutation (A+505G, Ser169Gly), were located in the coding region and were chosen to analyze their association with chicken egg production and broodiness traits in 644 Ningdu Sanhuang individuals. Two SNPs, G+123A and C+1107T, were significantly associated with chicken broody frequency (P < 0.05). Significant association was also found between the G+1065A - C+1107T haplotypes and chicken broody frequency (P < 0.05). In addition, the haplotypes of G+123A and T+198C were significantly associated with weight of first egg (EW) (P = 0.03). On the other hand, the distribution of the DRD1 mRNA was observed and the expression difference was compared between broodiness and non-broodiness chickens. The DRD1 mRNA was predominantly expressed in subcutaneous fat and abdominal fat of non-broodiness chicken, and then in heart, kidney, oviduct, glandular stomach, hypothalamus, and pituitary. In subcutaneous fat and abdominal fat, the level of non-broodiness was 26 to 28 times higher than that of broodiness. In pituitary, it was 5-fold higher. In heart, oviduct, and kidney, a 2-3 times decrease from non-broodiness to broodiness was displayed. In glandular stomach and hypothalamus, the level seen in non-broodiness and broodiness was almost the same.ConclusionThe polymorphisms of the DRD1 gene and their haplotypes were associated with chicken broody frequency and some egg production traits. The mRNA distribution was significant different between broodiness and non-broodiness chickens.


Poultry Science | 2008

Polymorphisms of Vasoactive Intestinal Peptide Receptor-1 Gene and Their Genetic Effects on Broodiness in Chickens

Min Zhou; Mingming Lei; Y. Rao; Qinghua Nie; Hua Zeng; M. Xia; F. Liang; Dexiang Zhang; Xiquan Zhang

Broodiness is a polygenic trait controlled by a small number of autosomal genes. Vasoactive intestinal peptide receptor-1 (VIPR-1) gene could be a candidate of chicken broodiness, and its genomic variations and genetic effects on chicken broodiness traits were analyzed in this study. The partial cloning and sequencing of the VIPR-1 gene showed that the average nucleotide diversity was 0.00669 +/- 0.00093 in Red Jungle Fowls (RJF), and 0.00582 +/- 0.00026 in domestic chickens. One hundred twenty-eight variation sites were identified in the 11,136-bp region of the chicken VIPR-1 gene. Twenty variation sites were genotyped using PCR-RFLP or PCR method to analyze average diversity, linkage-disequilibrium pattern, and haplotype structure in RJF, Xinghua chickens, Ningdu Sanhuang chickens, Baier Huang chickens, and Leghorn Layers. The RJF, Xinghua, Ningdu Sanhuang, and Baier Huang exhibited distinct characteristic of decreasing r(2) value over physical distance. Haplotype analyses showed that some variation sites of the 27-kb region from exon 6 to exon 11 could be associated with broodiness. The distribution of genotypic and allelic frequencies, and heterozygosities in the above 5 populations showed that A-284G, A+457G, C+598T, D+19820I, C+37454T, C+42913T, and C+53327T might be associated with broodiness. The 7 sites and the other 4 sites were genotyped in 644 NDH individuals under cage condition and were used for association analyses between each site and chicken broodiness traits. A significant association (P < 0.05) was found between C+598T in intron 2 and broody frequency (%). Another significant association (P < 0.05) was found between C+53327T and duration of broodiness, in which allele C was positive for DB.


Scientific Reports | 2015

MicroRNA-23b Promotes Avian Leukosis Virus Subgroup J (ALV-J) Replication by Targeting IRF1.

Zhenhui Li; Biao Chen; Min Feng; Hongjia Ouyang; Ming Zheng; Qiao Ye; Qinghua Nie; Xiquan Zhang

Avian leukosis virus subgroup J (ALV-J) can cause several different leukemia-like proliferative diseases in the hemopoietic system of chickens. Here, we investigated the transcriptome profiles and miRNA expression profiles of ALV-J-infected and uninfected chicken spleens to identify the genes and miRNAs related to ALV-J invasion. In total, 252 genes and 167 miRNAs were differentially expressed in ALV-J-infected spleens compared to control uninfected spleens. miR-23b expression was up-regulated in ALV-J-infected spleens compared with the control spleens, and transcriptome analysis revealed that the expression of interferon regulatory factor 1 (IRF1) was down-regulated in ALV-J-infected spleens compared to uninfected spleens. A dual-luciferase reporter assay showed that IRF1 was a direct target of miR-23b. miR-23b overexpression significantly (P = 0.0022) decreased IRF1 mRNA levels and repressed IRF1-3′-UTR reporter activity. In vitro experiments revealed that miR-23b overexpression strengthened ALV-J replication, whereas miR-23b loss of function inhibited ALV-J replication. IRF1 overexpression inhibited ALV-J replication, and IRF1 knockdown enhanced ALV-J replication. Moreover, IRF1 overexpression significantly (P = 0.0014) increased IFN-β expression. In conclusion, these results suggested that miR-23b may play an important role in ALV-J replication by targeting IRF1.

Collaboration


Dive into the Qinghua Nie's collaboration.

Top Co-Authors

Avatar

Xiquan Zhang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bahareldin Ali Abdalla

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hongjia Ouyang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhenhui Li

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chenglong Luo

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haiping Xu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dexiang Zhang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wen Luo

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge