Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qinghua Pan is active.

Publication


Featured researches published by Qinghua Pan.


Genetics | 2007

The Blast Resistance Gene Pi37 Encodes a Nucleotide Binding Site–Leucine-Rich Repeat Protein and Is a Member of a Resistance Gene Cluster on Rice Chromosome 1

Fei Lin; Shen Chen; Zhiqun Que; Ling Wang; Qinghua Pan

The resistance (R) gene Pi37, present in the rice cultivar St. No. 1, was isolated by an in silico map-based cloning procedure. The equivalent genetic region in Nipponbare contains four nucleotide binding site–leucine-rich repeat (NBS–LRR) type loci. These four candidates for Pi37 (Pi37-1, -2, -3, and -4) were amplified separately from St. No. 1 via long-range PCR, and cloned into a binary vector. Each construct was individually transformed into the highly blast susceptible cultivar Q1063. The subsequent complementation analysis revealed Pi37-3 to be the functional gene, while -1, -2, and -4 are probably pseudogenes. Pi37 encodes a 1290 peptide NBS–LRR product, and the presence of substitutions at two sites in the NBS region (V239A and I247M) is associated with the resistance phenotype. Semiquantitative expression analysis showed that in St. No. 1, Pi37 was constitutively expressed and only slightly induced by blast infection. Transient expression experiments indicated that the Pi37 product is restricted to the cytoplasm. Pi37-3 is thought to have evolved recently from -2, which in turn was derived from an ancestral -1 sequence. Pi37-4 is likely the most recently evolved member of the cluster and probably represents a duplication of -3. The four Pi37 paralogs are more closely related to maize rp1 than to any of the currently isolated rice blast R genes Pita, Pib, Pi9, Pi2, Piz-t, and Pi36.


Genetics | 2007

The in Silico Map-Based Cloning of Pi36 , a Rice Coiled-Coil–Nucleotide-Binding Site–Leucine-Rich Repeat Gene That Confers Race-Specific Resistance to the Blast Fungus

Fei Lin; Ling Wang; Qinghua Pan

The indica rice variety Kasalath carries Pi36, a gene that determines resistance to Chinese isolates of rice blast and that has been located to a 17-kb interval on chromosome 8. The genomic sequence of the reference japonica variety Nipponbare was used for an in silico prediction of the resistance (R) gene content of the interval and hence for the identification of candidate gene(s) for Pi36. Three such sequences, which all had both a nucleotide-binding site and a leucine-rich repeat motif, were present. The three candidate genes were amplified from the genomic DNA of a number of varieties by long-range PCR, and the resulting amplicons were inserted into pCAMBIA1300 and/or pYLTAC27 vectors to determine sequence polymorphisms correlated to the resistance phenotype and to perform transgenic complementation tests. Constructs containing each candidate gene were transformed into the blast-susceptible variety Q1063, which allowed the identification of Pi36-3 as the functional gene, with the other two candidates being probable pseudogenes. The Pi36-encoded protein is composed of 1056 amino acids, with a single substitution event (Asp to Ser) at residue 590 associated with the resistant phenotype. Pi36 is a single-copy gene in rice and is more closely related to the barley powdery mildew resistance genes Mla1 and Mla6 than to the rice blast R genes Pita, Pib, Pi9, and Piz-t. An RT–PCR analysis showed that Pi36 is constitutively expressed in Kasalath.


New Phytologist | 2011

The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication

Chun Zhai; Fei Lin; Zhongqiu Dong; Xiuying He; Bin Yuan; Xiaoshan Zeng; Ling Wang; Qinghua Pan

• The rice-rice blast pathosystem is of great interest, not only because of the damaging potential of rice blast to the rice crop, but also because both the pathogen and its host are experimentally amenable. The rice blast resistance gene Pik, which is one of the five classical alleles located at the Pik locus on the long arm of chromosome 11, confers high and stable resistance to many Chinese rice blast isolates. • The isolation and functional characterization of Pik were performed in the present study through genetic and genomic approaches. • A combination of Pik-1 and Pik-2 is required for the expression of Pik resistance. Both Pik-1 and Pik-2 encode coiled-coil nucleotide binding site leucine-rich repeat (NBS-LRR) proteins, and each shares a very high level of protein identity with corresponding proteins encoded by the Pik-m and Pik-p alleles. Pik could be distinguished from other Pik alleles, including Pik-m and Pik-p, by the allele-specific, single-nucleotide polymorphism T1-2944G. • The coupled genes probably did not evolve as a result of a duplication event, and are far from any NBS-LRR R gene characterized. Pik is a younger allele at the locus that probably emerged after rice domestication.


Theoretical and Applied Genetics | 2011

The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes

Bin Yuan; Chun Zhai; Wenjuan Wang; Xiaoshan Zeng; Xiaoke Xu; Hanqiao Hu; Fei Lin; Ling Wang; Qinghua Pan

The blast resistance gene Pik-p, mapping to the Pik locus on the long arm of rice chromosome 11, was isolated by map-based in silico cloning. Four NBS-LRR genes are present in the target region of cv. Nipponbare, and a presence/absence analysis in the Pik-p carrier cv. K60 excluded two of these as candidates for Pik-p. The other two candidates (KP3 and KP4) were expressed in cv. K60. A loss-of-function experiment by RNAi showed that both KP3 and KP4 are required for Pik-p function, while a gain-of-function experiment by complementation test revealed that neither KP3 nor KP4 on their own can impart resistance, but that resistance was expressed when both were introduced simultaneously. Both Pikp-1 (KP3) and Pikp-2 (KP4) encode coiled-coil NBS-LRR proteins and share, respectively, 95 and 99% peptide identity with the two alleles, Pikm1-TS and Pikm2-TS. The Pikp-1 and Pikp-2 sequences share only limited homology. Their sequence allowed Pik-p to be distinguished from Pik, Pik-s, Pik-m and Pik-h. Both Pikp-1 and Pikp-2 were constitutively expressed in cv. K60 and only marginally induced by blast infection.


Theoretical and Applied Genetics | 2012

The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast

Lixia Hua; Jianzhong Wu; Caixia Chen; Weihuai Wu; Xiuying He; Fei Lin; Li Wang; Ikuo Ashikawa; Takashi Matsumoto; Ling Wang; Qinghua Pan

We report the isolation of Pi1, a gene conferring broad-spectrum resistance to rice blast (Magnaporthe oryzae). Using loss- and gain-of-function approaches, we demonstrate that Pi1 is an allele at the Pik locus. Like other alleles at this locus, Pi1 consists of two genes. A functional nucleotide polymorphism (FNP) was identified that allows differentiation of Pi1 from other Pik alleles and other non-Pik genes. A extensive germplasm survey using this FNP reveals that Pi1 is a rare allele in germplasm collections and one that has conferred durable resistance to a broad spectrum of pathogen isolates.


PLOS ONE | 2014

Function and Interaction of the Coupled Genes Responsible for Pik-h Encoded Rice Blast Resistance

Chun Zhai; Yu Zhang; Nan Yao; Fei Lin; Zhe Liu; Zhongqiu Dong; Ling Wang; Qinghua Pan

Pik-h, an allele of Pik, confers resistance against the rice blast pathogen Magnaporthe oryzae. Its positional cloning has shown that it comprises a pair of NBS-LRR genes, Pikh-1 and Pikh-2. While Pikh-1 appears to be constitutively transcribed, the transcript abundance of Pikh-2 responds to pathogen challenge. The Pikh-1 CC (coiled coil) domain interacts directly with both AvrPik-h and Pikh-2. Transient expression assays demonstrated that Pikh-2 mediates the initiation of the host defence response. Nucleocytoplasmic partitioning of both Pikh-1 and Pikh-2 is required for their functionalities. In a proposed mechanistic model of Pik-h resistance, it is suggested that Pikh-1 acts as an adaptor between AvrPik-h and Pikh-2, while Pikh-2 transduces the signal to trigger Pik-h-specific resistance.


Scientific Reports | 2015

Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib

Shulin Zhang; Ling Wang; Weihuai Wu; Liyun He; Xianfeng Yang; Qinghua Pan

Magnaporthe oryzae (Mo) is the causative pathogen of the damaging disease rice blast. The effector gene AvrPib, which confers avirulence to host carrying resistance gene Pib, was isolated via map-based cloning. The gene encodes a 75-residue protein, which includes a signal peptide. Phenotyping and genotyping of 60 isolates from each of five geographically distinct Mo populations revealed that the frequency of virulent isolates, as well as the sequence diversity within the AvrPib gene increased from a low level in the far northeastern region of China to a much higher one in the southern region, indicating a process of host-driven selection. Resequencing of the AvrPiballele harbored by a set of 108 diverse isolates revealed that there were four pathoways, transposable element (TE) insertion (frequency 81.7%), segmental deletion (11.1%), complete absence (6.7%), and point mutation (0.6%), leading to loss of the avirulence function. The lack of any TE insertion in a sample of non-rice infecting Moisolates suggested that it occurred after the host specialization of Mo. Both the deletions and the functional point mutation were confined to the signal peptide. The reconstruction of 16 alleles confirmed seven functional nucleotide polymorphisms for the AvrPiballeles, which generated three distinct expression profiles.


Phytopathology | 2009

Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus.

Ling Wang; Xiaoke Xu; Fei Lin; Qinghua Pan

Pik-p is carried by cv. K60, which is one of the Japanese differentials widely used in both Japan and China since the 1980s. Its utility and specificity was evaluated with a total of 612 isolates of Magnaporthe oryzae collected from various regions in China in combination with 16 main resistance genes being used in the breeding programs. Pik-p is an independently and dominantly acting gene in the Pik cluster, which conditions differential reactions against many isolates and contains higher resistance in Guangdong, Jiangsu, and Sichuan provinces, China, indicating that this gene could be still used in these regions. A high-resolution genetic map of Pik-p was constructed using genomic position-ready markers. A set of 47 recombinants out of 681 F(2) plants derived from the crosses cv. K60 (resistant) x cv. AS20-1 (susceptible) and x cv. Kasalath (susceptible) was identified in the genetic interval defined by the markers RM5926 and K37 which flank the Pik gene cluster. This set was then genotyped with seven markers known to reside within the interval. The closest markers to Pik-p were K28 (approximately 0.60 centimorgans [cM]) and K39 (approximately 0.07 cM). A further four markers in the K28-K39 interval were developed from an in silico analysis based on the cv. Nipponbare genome sequence, and these all co-segregated with Pik-p. This 0.67-cM region is equivalent to a physical separation in cv. Nipponbare of approximately 126 kb, plus an as-yet-unfilled genomic gap of unknown length. Four nucleotide-binding site leucine-rich repeat-type resistance genes are present in this interval, and these represent good candidates for Pik-p.


Science China-life Sciences | 2012

Identification of the novel recessive gene pi55(t) conferring resistance to Magnaporthe oryzae.

Xiuying He; Xinqiong Liu; Li Wang; Ling Wang; Fei Lin; Yongsheng Cheng; Zhaoming Chen; Yaoping Liao; Qinghua Pan

The elite rice cultivar Yuejingsimiao 2 (YJ2) is characterized by a high level of grain quality and yield, and resistance against Magnaporthe oryzae. YJ2 showed 100% resistance to four fungal populations collected from Guangdong, Sichuan, Liaoning, and Heilongjiang Provinces, which is a higher frequency than that shown by the well-known resistance (R) gene donor cultivars such as Sanhuangzhan 2 and 28zhan. Segregation analysis for resistance with F2 and F4 populations indicated the resistance of YJ2 was controlled by multiple genes that are dominant or recessive. The putative R genes of YJ2 were roughly tagged by SSR markers, located on chromosomes 2, 6, 8, and 12, in a bulked-segregant analysis using genome-wide selected SSR markers with F4 lines that segregated into 3 resistant (R):1 susceptible (S) or 1R:3S. The recessive R gene on chromosome 8 was further mapped to an interval ≈1.9 cM/152 kb in length by linkage analysis with genomic position-ready markers in the mapping population derived from an F4 line that segregated into 1R:3S. Given that no major R gene was mapped to this interval, the novel R gene was designated as pi55(t). Out of 26 candidate genes predicted in the region based on the reference genomic sequence of the cultivar Nipponbare, two genes that encode a leucine-rich repeat-containing protein and heavy-metal-associated domain-containing protein, respectively, were suggested as the most likely candidates for pi55(t).


Molecular Plant-microbe Interactions | 2014

Stepwise Arms Race Between AvrPik and Pik Alleles in the Rice Blast Pathosystem

Weihuai Wu; Ling Wang; Shu Zhang; Zekang Li; Yu Zhang; Fei Lin; Qinghua Pan

A stepwise mutation that occurred in both pathogens and their respective hosts has played a seminal role in the co-evolutionary arms race evolution in diverse pathosystems. The process driven by rice blast AvrPik and Pik alleles was investigated through population genetic and evolutionary approaches. The genetic diversity of the non-signal domain of AvrPik was higher than that in its signal peptide domain. Positive selection for particular AvrPik alleles in the northeastern region of China was stronger than in the south. The perfect relationship between the functional lineages and AvrPik allele-specific pathotypes was established by ruling out the nonfunctional lineages derived from additional copies. Only four alleles conditioning stepwise pathotypes were detected in natural populations, which were likely created by only one evolutionary pathway with three recognizable mutation steps. Two non-stepwise pathotypes were determined by two blocks in a network constructed by all 16 possible alleles, indicating that a natural evolution process can be artificially changed by a combination of specific single-nucleotide polymorphisms. Assuming that AvrPik evolution has been largely driven by host selection, the co-evolutionary stepwise relationships between AvrPik and Pik was established. The experimental validation of stepwise mutation is required for the development of sustainable management strategies against plant disease.

Collaboration


Dive into the Qinghua Pan's collaboration.

Top Co-Authors

Avatar

Ling Wang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fei Lin

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chun Zhai

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shen Chen

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shujie Feng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Weihuai Wu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoshan Zeng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinqiong Liu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yu Zhang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Junhong Ma

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge