Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qingli Luo is active.

Publication


Featured researches published by Qingli Luo.


International Immunopharmacology | 2015

Icariin inhibits TNF-α/IFN-γ induced inflammatory response via inhibition of the substance P and p38-MAPK signaling pathway in human keratinocytes

Lingwen Kong; Jiaqi Liu; Jia Wang; Qingli Luo; Hongying Zhang; Baojun Liu; Fei Xu; Qi Pang; Yingchao Liu; Jingcheng Dong

Pro-inflammatory cytokines play a crucial role in the etiology of atopic dermatitis. We demonstrated that Herba Epimedii has anti-inflammatory potential in an atopic dermatitis mouse model; however, limited research has been conducted on the anti-inflammatory effects and mechanism of icariin, the major active ingredient in Herba Epimedii, in human keratinocytes. In this study, we evaluated the anti-inflammatory potential and mechanisms of icariin in the tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-induced inflammatory response in human keratinocytes (HaCaT cells) by observing these cells in the presence or absence of icariin. We measured IL-6, IL-8, IL-1β, MCP-1 and GRO-α production by ELISA; IL-6, IL-8, IL-1β, intercellular adhesion molecule-1 (ICAM-1) and tachykinin receptor 1 (TACR1) mRNA expression by real-time PCR; and P38-MAPK, P-ERK and P-JNK signaling expression by western blot in TNF-α/IFN-γ-stimulated HaCaT cells before and after icariin treatment. The expression of TNF-α-R1 and IFN-γ-R1 during the stimulation of the cell models was also evaluated before and after icariin treatment. We investigated the effect of icariin on these pro-inflammatory cytokines and detected whether this effect occurred via the mitogen-activated protein kinase (MAPK) signal transduction pathways. We further specifically inhibited the activity of two kinases with 20μM SB203580 (a p38 kinase inhibitor) and 50μM PD98059 (an ERK1/2 kinase inhibitor) to determine the roles of the two signal pathways involved in the inflammatory response. We found that icariin inhibited TNF-α/IFN-γ-induced IL-6, IL-8, IL-1β, and MCP-1 production in a dose-dependent manner; meanwhile, the icariin treatment inhibited the gene expression of IL-8, IL-1β, ICAM-1 and TACR1 in HaCaT cells in a time- and dose-dependent manner. Icariin treatment resulted in a reduced expression of p-P38 and p-ERK signal activation induced by TNF-α/IFN-γ; however, only SB203580, the p38 alpha/beta inhibitor, inhibited the secretion of inflammatory cytokines induced by TNF-α/IFN-γ in cultured HaCaT cells. The differential expression of TNF-α-R1 and IFN-γ-R1 was also observed after the stimulation of TNF-α/IFN-γ, which was significantly normalized after the icariin treatment. Collectively, we illustrated the anti-inflammatory property of icariin in human keratinocytes. These effects were mediated, at least partially, via the inhibition of substance P and the p38-MAPK signaling pathway, as well as by the regulation of the TNF-α-R1 and IFN-γ-R1 signals.


Immunobiology | 2015

Regulation of Th17/Treg function contributes to the attenuation of chronic airway inflammation by icariin in ovalbumin-induced murine asthma model.

Ying Wei; Baojun Liu; Jing Sun; Yubao Lv; Qingli Luo; Feng Liu; Jingcheng Dong

Icariin which is a flavonoid glucoside isolated from Epimedium brevicornu Maxim, has been reported to have anti-osteoporotic, anti-inflammatory and anti-depressant-like activities. In this study, we observed the effect of icariin on airway inflammation of ovalbumin (OVA)-induced murine asthma model and the associated regulatory mode on T-helper (Th)17 and regulatory T (Treg) cell function. Our data revealed that chronic OVA inhalation induced a dramatic increase in airway resistance (RL) and decrease in the lung dynamic compliance (Cdyn), and icariin and DEX treatment caused significant attenuation of such airway hyperresponsiveness (AHR). BALF cell counts demonstrated that icariin and DEX led to a prominent reduction in total leukocyte as well as lymphocyte, eosinophil, neutrophil, basophil and monocyte counts. Histological analysis results indicated that icariin and DEX alleviated the inflammatory cells infiltrating into the peribronchial tissues and goblet cells hyperplasia and mucus hyper-production. Flow cytometry test demonstrated that icariin or DEX administration resulted in a significant percentage reduction in CD4+RORγt+ T cells and elevation of CD4+Foxp3+ T cells in BALF. Furthermore, icariin or DEX caused a significant reduction in IL-6, IL-17 and TGF-β level in BALF. Unfortunately, icariin had no effect on IL-10 level in BALF. Western blot assay found that icariin or DEX suppressed RORγt and promoted Foxp3 expression in the lung tissue. qPCR analysis revealed that icariin and DEX resulted in a notable decrease in RORγt and increase in Foxp3 mRNA expression in isolated spleen CD4+ T cell. In conclusion, our results suggested that icariin was effective in the attenuation of AHR and chronic airway inflammatory changes in OVA-induced murine asthma model, and this effect was associated with regulation of Th17/Treg responses, which indicated that icariin may be used as a potential therapeutic method to treat asthma with Th17/Treg imbalance phenotype.


Journal of Ethnopharmacology | 2015

Bu-Shen-Yi-Qi formulae suppress chronic airway inflammation and regulate Th17/Treg imbalance in the murine ovalbumin asthma model.

Ying Wei; Qingli Luo; Jing Sun; Meixia Chen; Feng Liu; Jingcheng Dong

ETHNOPHARMACOLOGICAL RELEVANCE Bu-Shen-Yi-Qi formulae (BSYQF) are frequently used in the treatment of chronic inflammatory diseases in the respiratory system in traditional Chinese medicine (TCM). However, the regulatory effect of BSYQF on T helper 17 (Th17) and regulatory T (Treg) cells in murine ovalbumin (OVA) asthma model remains poorly understood. In the present study, we sought to determine the effect of high-performance liquid chromatography/mass spectrometry (HPLC/MS) standardized BSYQF on chronic airway inflammation and Th17/Treg imbalance in the murine OVA asthma model. MATERIALS AND METHODS The murine asthma model was induced by OVA sensitization and challenge and BSYQF was oral administrated. 24h after last OVA exposure, airway hyperresponsiveness (AHR) to methacholine (Mch) was assessed, and inflammatory cell counts and classification in bronchoalveolar lavage fluid (BALF) were analysed. Histopathological evaluation of the lung tissue was performed by hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining. Th17 and Treg associated cytokine levels in serum and BALF as well as transcription factors expression in the lung tissue were measured by ELISA, Bio-Plex and western blot assay. We also analysed the CD4(+)RORγt(+) and CD4(+)Foxp3(+) T cells in BALF and spleen by flow cytometric analysis. RESULTS Our results demonstrated that oral administration of BSYQF inhibited the markedly increased AHR and lung inflammation (p<0.05), resulted in a dramatic reduction in total inflammatory cells as well as neutrophils (Neu), lymphocytes (Lym), monocytes (Mon), eosinophils (Eos) and basophils (Bas) of OVA-induced asthmatic mice (p<0.05). Furthermore, BSYQF treatment caused a distinct reduction in IL-6, IL-10 and IL-17A levels in serum (p<0.05), and induced a significant improvement in IL-6 and IL-10 as well as a marked decrease in TGF-β1 and IL-17A levels in BALF of OVA-induced asthmatic mice (p<0.05). Mice in BSYQF treated groups also had decreased RORγt and increased Foxp3 expression in the lung tissue (p<0.05). Flow cytometry analysis revealed that CD4(+)RORγt(+) T cells elevated markedly and CD4(+)Foxp3(+) T cells decreased prominently in BALF and spleen in murine OVA asthma model (p<0.05), and BSYQF and DEX treatment lead to an obvious reduction in CD4(+)RORγt(+) T cells in BALF (p<0.05) but not in spleen. BSYQF and DEX treatment resulted in an obvious elevation in CD4(+)Foxp3(+) T cells in BALF and spleen (p<0.05). CONCLUSIONS Collectively, these results demonstrated that BSYQF could suppress chronic airway inflammation and regulate Th17/Treg imbalance by inhibition of Th17 and enhancement of Treg functions in the murine OVA asthma model, which may help to elucidate the underlying regulatory mode of BSYQF on asthma treatment.


International Immunopharmacology | 2015

Paeoniflorin attenuates allergic inflammation in asthmatic mice

Jing Sun; Jinfeng Wu; Changqing Xu; Qingli Luo; Bei Li; Jingcheng Dong

Paeoniflorin (PF), one of the major active ingredients of Chinese peony, has demonstrated anti-inflammatory and immunoregulatory effects. However, it has remained unclear whether PF treatment can inhibit allergic inflammation in asthma. In this study, we evaluated the effects of PF on pulmonary function and airway inflammation in asthmatic mice. The allergic asthma models were established in BALB/c mice. The mice were sensitized and challenged with ovalbumin. Airway hyperresponsiveness was detected by direct airway resistance analysis. Lung tissues were examined for inflammatory cell infiltration. IL-5, IL-13, IL-17, and eotaxin in bronchoalveolar lavage fluid (BALF) and their mRNA expression in lung tissue were examined by ELISA and realtime PCR, respectively. The total IgE level in serum was measured by ELISA. The protein expression of p-ERK and p-JNK was detected by western blot. Our data showed that PF oral administration significantly reduced airway hyperresponsiveness to aerosolized methacholine and decreased IL-5, IL-13, IL-17 and eotaxin levels in the BALF, and decreased IgE level in the serum. Histological studies showed that PF administration markedly decreased inflammatory infiltration. Similarly, treatment with PF significantly inhibited IL-5, IL-13, IL-17 and eotaxin mRNA expression in lung tissues. The protein expression levels of p-ERK and p-JNK were substantially decreased after oral administration of PF. In summary, PF displayed anti-inflammatory effects in the OVA-induced asthmatic model by decreasing the expression of IL-5, IL-13, IL-17 and eotaxin. These effects were mediated at least partially by inhibiting the activation of MAPK pathway.


Phytomedicine | 2014

Pharmacological investigation of a HPLC/MS standardized three herbal extracts containing formulae (Bu-Shen-Yi-Qi-Tang) on airway inflammation and hypothalamic-pituitary-adrenal axis activity in asthmatic mice

Qingli Luo; Mammat Nurahmat; Mihui Li; Jing Sun; Meixia Chen; Feng Liu; Ying Wei; Jingcheng Dong

Bu-Shen-Yi-Qi-Tang (BSYQT) which is prescribed on the basis of clinical experience is commonly used in clinic of traditional Chinese medicine (TCM) for asthma treatment. The components of BSYQT include Radix Astragali (RA), Herba Epimedii (HE) and Radix Rehmanniae (RR). The aim of this study was to screen extracts of BSYQT with best anti-inflammatory activity in asthmatic mice, and separate and identify the chemical compounds in them. Our results suggested that 60% ethanol extract of herbs (H60) and granules (G60) of BSYQT were the two extracts with best anti-inflammatory activity and effects of H60 were a little better than that of G60. High-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS/MS) analysis of the major chemical compounds of H60 and G60 revealed that 56 and 42 peaks were identified separately in H60 and G60. Further analysis revealed that 38 compounds were identified shared by H60 and G60, and 18 compounds were only in H60. There were 25 compounds in HE, 6 compounds in RR and 7 compounds in RA in the 38 compounds shared by G60 and H60. These 38 chemical components were tentatively considered the material basis of the anti-inflammatory activity of G60 and H60. The differences in the amount of the 38 chemical components as well as the 18 chemical components only in H60 were tentatively considered responsible for the activity differences between H60 and G60. In conclusion, these results suggested that extracts of BSYQT had inhibitory effects on airway inflammation in asthmatic mice, and H60 and G60 demonstrated the best anti-inflammatory activity. The 38 chemical compounds shared by H60 and G60 were responsible for their anti-inflammatory activity in asthmatic mice, and the differences in chemical compounds contents and amounts between H60 and G60 were responsible for this activity differences. This work would provide support for further pharmacodynamic material basis study of BSYQT.


The American Journal of Chinese Medicine | 2014

Effects of Psoraleae fructus and Its Major Component Psoralen on Th2 Response in Allergic Asthma

Hualiang Jin; Limin Wang; Changqing Xu; Bei Li; Qingli Luo; Jinfeng Wu; Yubao Lv; Genfa Wang; Jingcheng Dong

This study is aimed to evaluate the effects of Psoraleae fructus (PF) on Th2 responses in a rat model of asthma in vivo and psoralen, a major constituent in PF, on Th2 responses in vitro. A rat model of asthma was established by sensitization and challenged with ovalbumin (OVA). Airway hyperresponsiveness was detected by direct airway resistance analysis. Lung tissues were examined for cell infiltration and mucus hypersecretion. Bronchoalveolar lavage fluid (BALF) was assessed for cytokine levels. In vitro study, Th2 cytokine production was evaluated in the culture supernatant of D10.G4.1 (D10 cells) followed by the determination of cell viability, meanwhile Th2 transcription factor GATA-3 expression in D10 cells was also determined. The oral administration of PF significantly reduced airway hyperresponsiveness (AHR) to aerosolized methacholine and decreased IL-4 and IL-13 levels in the BALF. Histological studies showed that PF markedly inhibited inflammatory infiltration and mucus secretion in the lung tissues. In vitro study, psoralen significantly suppressed Th2 cytokines of IL-4, IL-5 and IL-13 by ConA-stimulated D10 cells without inhibitory effect on cell viability. Furthermore, GATA-3 protein expression was also markedly reduced by psoralen. This study demonstrated that PF exhibited inhibitory effects on hyperresponsiveness and airway inflammation in a rat model of asthma, which was associated with the suppression of Th2 response. Psoralen, a major constituent of PF, has immunomodulatory properties on Th2 response in vitro, which indicated that psoralen might be a critical component of PF for its therapeutic effects.


Nutrients | 2016

The Anticancer Properties of Herba Epimedii and Its Main Bioactive Componentsicariin and Icariside II.

Meixia Chen; Jinfeng Wu; Qingli Luo; Shuming Mo; Yubao Lyu; Ying Wei; Jingcheng Dong

Cancer is one of the leading causes of deaths worldwide. Compounds derived from traditional Chinese medicines have been an important source of anticancer drugs and adjuvant agents to potentiate the efficacy of chemotherapeutic drugs and improve the side effects of chemotherapy. Herba Epimedii is one of most popular herbs used in China traditionally for the treatment of multiple diseases, including osteoporosis, sexual dysfunction, hypertension and common inflammatory diseases. Studies show Herba Epimedii also possesses anticancer activity. Flavonol glycosides icariin and icariside II are the main bioactive components of Herba Epimedii. They have been found to possess anticancer activities against various human cancer cell lines in vitro and mouse tumor models in vivo via their effects on multiple biological pathways, including cell cycle regulation, apoptosis, angiogenesis, and metastasis, and a variety of signaling pathways including JAK2-STAT3, MAPK-ERK, and PI3k-Akt-mTOR. The review is aimed to provide an overview of the current research results supporting their therapeutic effects and to highlight the molecular targets and action mechanisms.


Evidence-based Complementary and Alternative Medicine | 2013

Establishment and Comparison of Combining Disease and Syndrome Model of Asthma with “Kidney Yang Deficiency” and “Abnormal Savda”

Bei Li; Qingli Luo; Mammat Nurahmat; Hualiang Jin; Yijie Du; Xiao Wu; Yubao Lv; Jing Sun; Muhammadjan Abduwaki; Weiyi Gong; Jingcheng Dong

The study was the first time to establish and compare two rat models of two common syndromes: Kidney Yang Deficiency syndrome (KYDS) in traditional Chinese medicine (TCM) and abnormal savda syndrome (ASS) in traditional Uighur medicine (TUM). Then, we also established and evaluated rat models of combining disease and syndrome models of asthma with KYDS or ASS. Results showed that usage of the high dose of corticosterone (CORT) injection or external factors could successfully establish the KYDS or ASS rat models, and the two models had similar changes in biological characterization, abnormal behaviors, dysfunction of hypothalamic-pituitary-target organ axes (HPTOA), and sympathetic/parasympathetic (S/P) nerve system but varied in different degrees. The rat models of combining disease and syndrome of asthma with KYDS or ASS had either pathological characteristics of asthma such as airway hyperresponsiveness (AHR), airway inflammation, airway remodeling, which were more serious than allergy exposure alone, or the syndrome performance of Kidney Yang Deficiency in TCM and abnormal savda in TUM. These findings provide a biological rationale for further investigation of combining disease and syndrome model of asthma as an effective animal model for exploring asthma based on the theory of traditional medicine.


Journal of Separation Science | 2014

Rapid characterization and determination of multiple components in Bu‐Shen‐Yi‐Qi‐Fang by high‐performance liquid chromatography coupled to electrospray ionization and quadrupole time‐of‐flight mass spectrometry

Mammat Nurahmat; Meixia Chen; Qingli Luo; Yun Ling; Jingcheng Dong; Chenggang Huang

In this study, a qualitative and quantitative analysis using high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry was performed for the quality control of Bu-Shen-Yi-Qi-Fang, a traditional Chinese formula used for asthma. Thirty-four compounds, including flavonoids, isoflavonoids, triterpenoid saponins, and iridoid glycosides were identified or tentatively characterized by comparing their retention times and mass spectra with those of authentic standards or literature data. Sixteen components were considered as the main bioactive constituents of Bu-Shen-Yi-Qi-Fang and they were chosen as the chemical markers in quantitative analysis, including catalpol, leonuride, calycosin-7-O-β-d-glucoside, hyperoside, acteoside, formononetin-7-O-β-D-glucoside, epimedin A, calycosin, icariin, epimedin B, epimedin C, formononetin, astragaloside IV, astragaloside II, baohuoside-I, and astragaloside I. The total run time was 20 min. It was found that the calibration curves for all analytes showed good linearity (R(2) > 0.99) within the test ranges. The relative standard deviations for intra- and inter-day precisions were below 3.9 and 11.7%, respectively. The accuracy was evaluated by the recovery test within the range of 89.20-110.71% with the relative standard deviation < 4.8%. The sample was stable for at least 48 h at 4°C. The results showed that the new approach was effective for the quality control of Bu-Shen-Yi-Qi-Fang.


Evidence-based Complementary and Alternative Medicine | 2015

Acupuncture Attenuated Inflammation and Inhibited Th17 and Treg Activity in Experimental Asthma.

Ying Wei; Ming Dong; Hongying Zhang; Yubao Lv; Jiaqi Liu; Kai Wei; Qingli Luo; Jing Sun; Feng Liu; Fei Xu; Jingcheng Dong

Acupuncture is an effective therapeutic method in asthma treatment in traditional Chinese medicine. Here, we evaluated the effect of acupuncture on airway hyperresponsiveness (AHR) and the associated inflammatory changes as well as Th17 and Treg activity in ovalbumin- (OVA-) induced experimental asthma. Our results revealed that acupuncture treatment significantly inhibited AHR, lung inflammation, and mucus secretion of experimental asthma mice. Furthermore, a decrease in lymphocytes and eosinophils as well as neutrophils was observed in bronchoalveolar lavage fluid (BALF) of mice treated with acupuncture. Acupuncture reduced the OVA specific IgE level as well as the Th17 cytokine levels including IL-17A, IL-17F, and IL-22 in the serum of the experimental asthma mice. Acupuncture treatment group also had reduced CD4+IL-17A+ cell numbers and increased CD4+Foxp3+ cell numbers in BALF. In addition, acupuncture could inhibit IL-17R, RORγt, p65, and the inhibitor of NF-κB kinase-α (IKKα) protein expression. Our results indicated that acupuncture was effective in inhibiting AHR and inflammation in OVA-induced experimental asthma, which may be associated with the regulation of Th17 and Treg activity and NF-κB pathway.

Collaboration


Dive into the Qingli Luo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge