Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qingli Shi is active.

Publication


Featured researches published by Qingli Shi.


Annals of Neurology | 2000

Mitochondrial damage in Alzheimer's disease varies with apolipoprotein E genotype

Gary E. Gibson; Vahram Haroutunian; Hui Zhang; Larry Park; Qingli Shi; M. Lesser; Richard C. Mohs; R. K-F. Sheu; John P. Blass

Brain metabolism and the activity of the α‐ketoglutarate dehydrogenase complex (KGDHC), a mitochondrial enzyme, are diminished in brains from patients with Alzheimers disease (AD). In 109 subjects, the Clinical Dementia Rating (CDR) score was highly correlated with brain KGDHC activity. In AD patients who carried the epsilon 4 allele of the apolipoprotein E gene (ApoE4), the CDR score correlated better with KGDHC activity than with the densities of neuritic plaques or neuritic tangles. In contrast, in patients without ApoE4, the CDR score correlated significantly better with tangles and plaques than with KGDHC activity. The results suggest that mitochondrial/oxidative damage may be more important for the cognitive dysfunction in AD patients who carry ApoE4 than in those who do not. Ann Neurol 2000;48:297–303


Alzheimer Disease & Associated Disorders | 2007

Oxidative Stress and Transcriptional Regulation in Alzheimer Disease

Qingli Shi; Gary E. Gibson

Alzheimer disease (AD) is defined by progressive impairments in memory and cognition and by the presence of extracellular neuritic plaques and intracellular neurofibrillary tangles. However, oxidative stress and impaired mitochondrial function always accompany AD. Mitochondria are a major site of production of free radicals [ie, reactive oxygen species (ROS)] and primary targets of ROS. ROS are cytotoxic, and evidence of ROS-induced damage to cell membranes, proteins, and DNA in AD is overwhelming. Nevertheless, therapies based on antioxidants have been disappointing. Thus, alternative strategies are necessary. ROS also act as signaling molecules including for transcription. Thus, chronic exposure to ROS in AD could activate cascades of genes. Although initially protective, prolonged activation may be damaging. Thus, therapeutic approaches based on modulation of these gene cascades may lead to effective therapies. Genes involved in several pathways including antioxidant defense, detoxification, inflammation, etc, are induced in response to oxidative stress and in AD. However, genes that are associated with energy metabolism, which is necessary for normal brain function, are mostly down-regulated. Redox-sensitive transcription factors such as activator protein-1, nuclear factor-κB, specificity protein-1, and hypoxia-inducible factor are important in redox-dependent gene regulation. Peroxisome proliferators-activated receptor-γ coactivator (PGC-1α) is a coactivator of several transcription factors and is a potent stimulator of mitochondrial biogenesis and respiration. Down-regulated expression of PGC-1α has been implicated in Huntington disease and in several Huntington disease animal models. PGC-1α role in regulation of ROS metabolism makes it a potential candidate player between ROS, mitochondria, and neurodegenerative diseases. This review summarizes the current progress on how oxidative stress regulates the expression of genes that might contribute to AD pathophysiology and the implications of the transcriptional modifications for AD. Finally, potential therapeutic strategies based on the updated understandings of redox state-dependent gene regulation in AD are proposed to overcome the lack of efficacy of antioxidant therapies.


Neurobiology of Aging | 2009

Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer’s mouse model

Saravanan S. Karuppagounder; Hui Xu; Qingli Shi; Lian H. Chen; Steve Pedrini; David Pechman; Harriet Baker; M. Flint Beal; Sam Gandy; Gary E. Gibson

Mitochondrial dysfunction, oxidative stress and reductions in thiamine-dependent enzymes have been implicated in multiple neurological disorders including Alzheimers disease (AD). Experimental thiamine deficiency (TD) is an established model for reducing the activities of thiamine-dependent enzymes in brain. TD diminishes thiamine-dependent enzymes throughout the brain, but produces a time-dependent selective neuronal loss, glial activation, inflammation, abnormalities in oxidative metabolism and clusters of degenerating neurites in only specific thalamic regions. The present studies tested how TD alters brain pathology in Tg19959 transgenic mice over expressing a double mutant form of the amyloid precursor protein (APP). TD exacerbated amyloid plaque pathology in transgenic mice and enlarged the area occupied by plaques in cortex, hippocampus and thalamus by 50%, 200% and 200%, respectively. TD increased Abeta(1-42) levels by about three fold, beta-CTF (C99) levels by 33% and beta-secretase (BACE1) protein levels by 43%. TD-induced inflammation in areas of plaque formation. Thus, the induction of mild impairment of oxidative metabolism, oxidative stress and inflammation induced by TD alters metabolism of APP and/or Abeta and promotes accumulation of plaques independent of neuron loss or neuritic clusters.


Neuroscience | 2008

INFLUENCE OF MITOCHONDRIAL ENZYME DEFICIENCY ON ADULT NEUROGENESIS IN MOUSE MODELS OF NEURODEGENERATIVE DISEASES

Noel Y. Calingasan; Daniel J. Ho; Elizabeth Wille; M.V. Campagna; J. Ruan; Magali Dumont; Lichuan Yang; Qingli Shi; Gary E. Gibson; M.F. Beal

Mitochondrial defects including reduction of a key mitochondrial tricarboxylic acid cycle enzyme alpha-ketoglutarate-dehydrogenase complex (KGDHC) are characteristic of many neurodegenerative diseases. KGDHC consists of alpha-ketoglutarate dehydrogenase, dihydrolipoyl succinyltransferase (E2k), and dihydrolipoamide dehydrogenase (Dld) subunits. We investigated whether Dld or E2k deficiency influences adult brain neurogenesis using immunohistochemistry for the immature neuron markers, doublecortin (Dcx) and polysialic acid-neural cell adhesion molecule, as well as a marker for proliferation, proliferating cell nuclear antigen (PCNA). Both Dld- and E2k-deficient mice showed reduced Dcx-positive neuroblasts in the subgranular zone (SGZ) of the hippocampal dentate gyrus compared with wild-type mice. In the E2k knockout mice, increased immunoreactivity for the lipid peroxidation marker, malondialdehyde occurred in the SGZ. These alterations did not occur in the subventricular zone (SVZ). PCNA staining revealed decreased proliferation in the SGZ of E2k-deficient mice. In a transgenic mouse model of Alzheimers disease, Dcx-positive cells in the SGZ were also reduced compared with wild type, but Dld deficiency did not exacerbate the reduction. In the malonate lesion model of Huntingtons disease, Dld deficiency did not alter the lesion-induced increase and migration of Dcx-positive cells from the SVZ into the ipsilateral striatum. Thus, the KGDHC subunit deficiencies associated with elevated lipid peroxidation selectively reduced the number of neuroblasts and proliferating cells in the hippocampal neurogenic zone. However, these mitochondrial defects neither exacerbated certain pathological conditions, such as amyloid precursor protein (APP) mutation-induced reduction of SGZ neuroblasts, nor inhibited malonate-induced migration of SVZ neuroblasts. Our findings support the view that mitochondrial dysfunction can influence the number of neural progenitor cells in the hippocampus of adult mice.


Biochimica et Biophysica Acta | 2008

Novel functions of the α-ketoglutarate dehydrogenase complex may mediate diverse oxidant-induced changes in mitochondrial enzymes associated with Alzheimer’s disease

Qingli Shi; Hui Xu; Wayne Kleinman; Gary E. Gibson

Measures in autopsied brains from Alzheimers Disease (AD) patients reveal a decrease in the activity of alpha-ketoglutarate dehydrogenase complex (KGDHC) and an increase in malate dehydrogenase (MDH) activity. The present experiments tested whether both changes could be caused by the common oxidant H(2)O(2) and to probe the mechanism underlying these changes. Since the response to H(2)O(2) is modified by the level of the E2k subunit of KGDHC, the interaction of MDH and KGDHC was studied in cells with varying levels of E2k. In cells with only 23% of normal E2k protein levels, one-hour treatment with H(2)O(2) decreased KGDHC and increased MDH activity as well as the mRNA level for both cytosolic and mitochondrial MDH. The increase in MDH did not occur in cells with 100% or 46% of normal E2k. Longer treatments with H(2)O(2) inhibited the activity of both enzymes. Glutathione is a major regulator of cellular redox state and can modify enzyme activities. H(2)O(2) converts reduced glutathione (GSH) to oxidized glutathione (GSSG), which reacts with protein thiols. Treatment of purified KGDHC with GSSG leads to glutathionylation of all three KGDHC subunits. Thus, cellular glutathione level was manipulated by two means to determine the effect on KGDHC and MDH activities. Both buthionine sulfoximine (BSO), which inhibits glutathione synthesis without altering redox state, and H(2)O(2) diminished glutathione to a similar level after 24 h. However, H(2)O(2), but not BSO, reduced KGDHC and MDH activities, and the reduction was greater in the E2k-23 line. These findings suggest that the E2k may mediate diverse responses of KGDHC and MDH to oxidants. In addition, the differential response of activities to BSO and H(2)O(2) together with the in vitro interaction of KGDHC with GSSG suggests that glutathionylation is one possible mechanism underlying oxidative stress-induced inhibition of the TCA cycle enzymes.


Journal of Alzheimer's Disease | 2010

A mitocentric view of Alzheimer's disease suggests multi-faceted treatments.

Gary E. Gibson; Qingli Shi

Alzheimers disease (AD) is defined by senile plaques made of amyloid-beta peptide (Abeta), neurofibrillary tangles made of hyperphosphorylated tau proteins, and memory deficits. Thus, the events initiating the cascade leading to these end points may be more effective therapeutic targets than treating each facet individually. In the small percentage of cases of AD that are genetic (or animal models that reflect this form of AD), the factor initiating AD is clear (e.g., genetic mutations lead to high Abeta1-42 or hyperphosphorylated tau proteins). In the vast majority of AD cases, the cause is unknown. Substantial evidence now suggests that abnormalities in glucose metabolism/mitochondrial function/oxidative stress (GMO) are an invariant feature of AD and occur at an early stage of the disease process in both genetic and non-genetic forms of AD. Indeed, decreases in brain glucose utilization are diagnostic for AD. Changes in calcium homeostasis also precede clinical manifestations of AD. Abnormal GMO can lead to plaques, tangles, and the calcium abnormalities that accompany AD. Abnormalities in GMO diminish the ability of the brain to adapt. Therapies targeting mitochondria may ameliorate abnormalities in plaques, tangles, calcium homeostasis, and cognition that comprise AD.


Journal of Neurochemistry | 2011

Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a

Qingli Shi; Gary E. Gibson

J. Neurochem. (2011) 118, 440–448.


Journal of Biological Chemistry | 2011

Inactivation and Reactivation of the Mitochondrial α-Ketoglutarate Dehydrogenase Complex

Qingli Shi; Hui Xu; Haiqiang Yu; Nawei Zhang; Yaozu Ye; Alvaro G. Estévez; Haiteng Deng; Gary E. Gibson

Reduced brain metabolism is an invariant feature of Alzheimer Disease (AD) that is highly correlated to the decline in brain functions. Decreased activities of key tricarboxylic acid cycle (TCA) cycle enzymes may underlie this abnormality and are highly correlated to the clinical state of the patient. The activity of the α-ketoglutarate dehydrogenase complex (KGDHC), an arguably rate-limiting enzyme of the TCA cycle, declines with AD, but the mechanism of inactivation and whether it can be reversed remains unknown. KGDHC consists of multiple copies of three subunits. KGDHC is sensitive to oxidative stress, which is pervasive in AD brain. The present studies tested the mechanism for the peroxynitrite-induced inactivation and subsequent reactivation of purified and cellular KGDHC. Peroxynitrite inhibited purified KGDHC activity in a dose-dependent manner and reduced subunit immunoreactivity and increased nitrotyrosine immunoreactivity. Nano-LC-MS/MS showed that the inactivation was related to nitration of specific tyrosine residues in the three subunits. GSH diminished the nitrotyrosine immunoreactivity of peroxynitrite-treated KGDHC, restored the activity and the immunoreactivity for KGDHC. Nano-LC-MS/MS showed this was related to de-nitration of specific tyrosine residues, suggesting KGDHC may have a denitrase activity. Treatment of N2a cells with peroxynitrite for 5 min followed by recovery of cells for 24 h reduced KGDHC activity and increased nitrotyrosine immunoreactivity. Increasing cellular GSH in peroxynitrite-treated cells rescued KGDHC activity to the control level. The results suggest that restoring KGDHC activity is possible and may be a useful therapeutic approach in neurodegenerative diseases.


Annals of the New York Academy of Sciences | 2008

Oxidant‐induced Changes in Mitochondria and Calcium Dynamics in the Pathophysiology of Alzheimer's Disease

Gary E. Gibson; Saravanan S. Karuppagounder; Qingli Shi

Considerable data support the hypothesis that mitochondrial abnormalities link gene defects and/or environmental insults to the neurodegenerative process. The interaction of oxidants with calcium and the mitochondrial enzymes of the tricarboxylic acid cycle are central to that relationship. Abnormalities that were discovered in brains or fibroblasts from patients with Alzheimers disease (AD) have been modeled in vitro and in vivo to assess their pathophysiological importance and to determine how they might be reversed. The conclusions are consistent with the hypothesis that the AD‐related abnormalities result from oxidative stress. The selection of compounds for reversal is complex because the actions of the relevant compounds vary under different conditions, such as cell redox states and acute versus chronic changes. However, the models that have been developed are useful for testing the effectiveness of the potential medications. The results suggest that the reversal of mitochondrial deficits and a reduction in oxidative stress will reduce clinical and pathological changes and benefit patients.


Neurochemistry International | 2007

Responses of the mitochondrial alpha-ketoglutarate dehydrogenase complex to thiamine deficiency may contribute to regional selective vulnerability

Qingli Shi; Saravanan S. Karuppagounder; Hui Xu; David Pechman; Huan-Lian Chen; Gary E. Gibson

Thiamine-dependent enzymes are diminished in multiple neurodegenerative diseases. Thiamine deficiency (TD) reduces the activity of thiamine dependent-enzymes [e.g., the alpha-ketoglutarate dehydrogenase complex (KGDHC)], induces regional selective neurodegeneration and serves as a model of a mild impairment of oxidative metabolism. The current experiments tested whether changes in KGDHC protein subunits (E1k, E2k and E3) or activity or message levels underlie the selective loss of neurons in particular brain regions. Thus, TD-induced changes in these variables in the brain region most vulnerable to TD [the sub-medial thalamic nucleus (SmTN)] were compared to those in a region that is relatively resistant to TD (cortex) at stages of TD when the neuron loss in SmTN is not present, minimal or severe. Impaired motor performance on rotarod was apparent by 8 days of TD (-32%) and was severe by 10 days of TD (-97%). At TD10, the overall KGDHC activity measured by an in situ histochemical staining method declined 52% in SmTN but only 20% in cortex. Reductions in the E2k and E3 mRNA in SmTN occurred as early as TD6 (-28 and -18%, respectively) and were more severe by TD10 (-61 and -66%, respectively). On the other hand, the level of E1k mRNA did not decline in SmTN until TD10 (-48%). In contrast, TD did not alter mRNA levels of the subunits in cortex at late stages. Western blots and immunocytochemistry revealed different aspects of the changes in protein levels. In SmTN, the immunoreactivity of E1k and E3 by Western blotting increased 34 and 40%, respectively, only at TD8. In cortex, the immunoreactivity of the three subunits was not altered. Immunocytochemical staining of brain sections from TD10 mice indicated a reduction in the immunoreactivity of all subunits in SmTN, but not in cortex. These findings demonstrate that the response of the KGDHC activity, mRNA and immunoreactivity of E1k, E2k and E3 to TD is region and time dependent. Loss of KGDHC activity in cortex is likely related to post-translational modification rather than a loss of protein, whereas in SmTN transcriptional and post-translational modifications may account for diminished KGDHC activity. Moreover, the earlier detection in TD induced-changes of the transcripts of KGDHC indicates that transcriptional modification of the two subunits (E2k and E3) of KGDHC may be one of the early events in the cascade leading to selective neuronal death.

Collaboration


Dive into the Qingli Shi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge