Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qingli Xiao is active.

Publication


Featured researches published by Qingli Xiao.


Journal of Biological Chemistry | 2006

Matrix metalloproteinase-9 degrades amyloid-β fibrils in vitro and compact plaques in situ

Ping Yan; Xiaoyan Hu; Haowei Song; Ke-Jie Yin; Randall J. Bateman; John R. Cirrito; Qingli Xiao; Fong F. Hsu; John Turk; Jan Xu; Chung Y. Hsu; David M. Holtzman; Jin-Moo Lee

The pathological hallmark of Alzheimer disease is the senile plaque principally composed of tightly aggregated amyloid-β fibrils (fAβ), which are thought to be resistant to degradation and clearance. In this study, we explored whether proteases capable of degrading soluble Aβ (sAβ) could degrade fAβ as well. We demonstrate that matrix metalloproteinase-9 (MMP-9) can degrade fAβ and that this ability is not shared by other sAβ-degrading enzymes examined, including endothelin-converting enzyme, insulin-degrading enzyme, and neprilysin. fAβ was decreased in samples incubated with MMP-9 compared with other proteases, assessed using thioflavin-T. Furthermore, fAβ breakdown with MMP-9 but not with other proteases was demonstrated by transmission electron microscopy. Proteolytic digests of purified fAβ were analyzed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify sites of Aβ that are cleaved during its degradation. Only MMP-9 digests contained fragments (Aβ1-20 and Aβ1-30) from fAβ1-42 substrate; the corresponding cleavage sites are thought to be important for β-pleated sheet formation. To determine whether MMP-9 can degrade plaques formed in vivo, fresh brain slices from aged APP/PS1 mice were incubated with proteases. MMP-9 digestion resulted in a decrease in thioflavin-S (ThS) staining. Consistent with a role for endogenous MMP-9 in this process in vivo, MMP-9 immunoreactivity was detected in astrocytes surrounding amyloid plaques in the brains of aged APP/PS1 and APPsw mice, and increased MMP activity was selectively observed in compact ThS-positive plaques. These findings suggest that MMP-9 can degrade fAβ and may contribute to ongoing clearance of plaques from amyloid-laden brains.


The Journal of Neuroscience | 2006

Matrix Metalloproteinases Expressed by Astrocytes Mediate Extracellular Amyloid-β Peptide Catabolism

Ke-Jie Yin; John R. Cirrito; Ping Yan; Xiaoyan Hu; Qingli Xiao; Xiaoou Pan; Randall J. Bateman; Haowei Song; Fong Fu Hsu; John Turk; Jan Xu; Chung Y. Hsu; Jason C. Mills; David M. Holtzman; Jin-Moo Lee

It has been postulated that the development of amyloid plaques in Alzheimers disease (AD) may result from an imbalance between the generation and clearance of the amyloid-β peptide (Aβ). Although familial AD appears to be caused by Aβ overproduction, sporadic AD (the most prevalent form) may result from impairment in clearance. Recent evidence suggests that several proteases may contribute to the degradation of Aβ. Furthermore, astrocytes have recently been implicated as a potential cellular mediator of Aβ degradation. In this study, we examined the possibility that matrix metalloproteinases (MMPs), proteases known to be expressed and secreted by astrocytes, could play a role in extracellular Aβ degradation. We found that astrocytes surrounding amyloid plaques showed enhanced expression of MMP-2 and MMP-9 in aged amyloid precursor protein (APP)/presenilin 1 mice. Moreover, astrocyte-conditioned medium (ACM) degraded Aβ, lowering levels and producing several fragments after incubation with synthetic human Aβ1–40 and Aβ1–42. This activity was attenuated with specific inhibitors of MMP-2 and -9, as well as in ACM derived from mmp-2 or -9 knock-out (KO) mice. In vivo, significant increases in the steady-state levels of Aβ were found in the brains of mmp-2 and -9 KO mice compared with wild-type controls. Furthermore, pharmacological inhibition of the MMPs with N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide (GM 6001) increased brain interstitial fluid Aβ levels and elimination of half-life in APPsw mice. These results suggest that MMP-2 and -9 may contribute to extracellular brain Aβ clearance by promoting Aβ catabolism.


The Journal of Neuroscience | 2009

Characterizing the Appearance and Growth of Amyloid Plaques in APP/PS1 Mice

Ping Yan; Adam W. Bero; John R. Cirrito; Qingli Xiao; Xiaoyan Hu; Yan Wang; Ernesto R. Gonzales; David M. Holtzman; Jin-Moo Lee

Amyloid plaques are primarily composed of extracellular aggregates of amyloid-β (Aβ) peptide and are a pathological signature of Alzheimers disease. However, the factors that influence the dynamics of amyloid plaque formation and growth in vivo are largely unknown. Using serial intravital multiphoton microscopy through a thinned-skull cranial window in APP/PS1 transgenic mice, we found that amyloid plaques appear and grow over a period of weeks before reaching a mature size. Growth was more prominent early after initial plaque formation: plaques grew faster in 6-month-old compared with 10-month-old mice. Plaque growth rate was also size-related, as smaller plaques exhibited more rapid growth relative to larger plaques. Alterations in interstitial Aβ concentrations were associated with changes in plaque growth. Parallel studies using multiphoton microscopy and in vivo microdialysis revealed that pharmacological reduction of soluble extracellular Aβ by as little as 20–25% was associated with a dramatic decrease in plaque formation and growth. Furthermore, this small reduction in Aβ synthesis was sufficient to reduce amyloid plaque load in 6-month-old but not 10-month-old mice, suggesting that treatment early in disease pathogenesis may be more effective than later treatment. In contrast to thinned-skull windows, no significant plaque growth was observed under open-skull windows, which demonstrated extensive microglial and astrocytic activation. Together, these findings indicate that individual amyloid plaque growth in vivo occurs over a period of weeks and may be influenced by interstitial Aβ concentration as well as reactive gliosis.


The FASEB Journal | 2013

Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice

Andrew W. Kraft; Xiaoyan Hu; Hyejin Yoon; Ping Yan; Qingli Xiao; Yan Wang; So Chon Gil; Jennifer Brown; Ulrika Wilhelmsson; Jessica L. Restivo; John R. Cirrito; David M. Holtzman; Jungsu Kim; Milos Pekny; Jin-Moo Lee

The accumulation of aggregated amyloid‐β (Aβ) in amyloid plaques is a neuropathological hallmark of Alzheimers disease (AD). Reactive astrocytes are intimately associated with amyloid plaques; however, their role in AD pathogenesis is unclear. We deleted the genes encoding two intermediate filament proteins required for astrocyte activation—glial fibrillary acid protein (Gfap) and vimentin (Vim)—in transgenic mice expressing mutant human amyloid precursor protein and presenilin‐1 (APP/PS1). The gene deletions increased amyloid plaque load: APP/PS1 Gfap–/– Vim–/– mice had twice the plaque load of APP/PS1 Gfap+/+ Vim+/+ mice at 8 and 12 mo of age. APP expression and soluble and interstitial fluid Aβ levels were unchanged, suggesting that the deletions had no effect on APP processing or Aβ generation. Astrocyte morphology was markedly altered by the deletions: wild‐type astrocytes had hypertrophied processes that surrounded and infiltrated plaques, whereas Gfap–/– Vim–/– astrocytes had little process hypertrophy and lacked contact with adjacent plaques. Moreover, Gfap and Vim gene deletion resulted in a marked increase in dystrophic neurites (2‐ to 3‐fold higher than APP/PS1 Gfap+/+ Vim+/+ mice), even after normalization for amyloid load. These results suggest that astrocyte activation limits plaque growth and attenuates plaque‐related dystrophic neurites. These activities may require intimate contact between astrocyte and plaque.—Kraft, A. W., Hu, X., Yoon, H., Yan, P., Xiao, Q., Wang, Y., Gil, S. C., Brown, J., Wilhelmsson, U., Restivo, J. L., Cirrito, J. R., Holtzman, D. M., Kim, J., Pekny, M., Lee, J.‐M. Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J. 27, 187–198 (2013). www.fasebj.org


Journal of Biological Chemistry | 2012

Role of Phosphatidylinositol Clathrin Assembly Lymphoid-Myeloid Leukemia (PICALM) in Intracellular Amyloid Precursor Protein (APP) Processing and Amyloid Plaque Pathogenesis

Qingli Xiao; So-Chon Gil; Ping Yan; Yan Wang; Sharon Han; Ernie Gonzales; Ronaldo Perez; John R. Cirrito; Jin-Moo Lee

Background: Recent GWA studies have demonstrated an association between the endocytic clathrin adaptor PICALM and Alzheimer disease. Results: Manipulation of PICALM expression selectively alters APP endocytosis and Aβ production in neural cells and plaque deposition in APP transgenic mice. Conclusion: PICALM is involved in intracellular APP processing and plaque pathogenesis. Significance: Understanding cellular mechanisms involved in APP processing may reveal novel targets for intervention. One of the pathological hallmarks of Alzheimer disease is the accumulation of amyloid plaques in the extracellular space in the brain. Amyloid plaques are primarily composed of aggregated amyloid β peptide (Aβ), a proteolytic fragment of the transmembrane amyloid precursor protein (APP). For APP to be proteolytically cleaved into Aβ, it must be internalized into the cell and trafficked to endosomes where specific protease complexes can cleave APP. Several recent genome-wide association studies have reported that several single nucleotide polymorphisms (SNPs) in the phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) gene were significantly associated with Alzheimer disease, suggesting a role in APP endocytosis and Aβ generation. Here, we show that PICALM co-localizes with APP in intracellular vesicles of N2a-APP cells after endocytosis is initiated. PICALM knockdown resulted in reduced APP internalization and Aβ generation. Conversely, PICALM overexpression increased APP internalization and Aβ production. In vivo, PICALM was found to be expressed in neurons and co-localized with APP throughout the cortex and hippocampus in APP/PS1 mice. PICALM expression was altered using AAV8 gene transfer of PICALM shRNA or PICALM cDNA into the hippocampus of 6-month-old APP/PS1 mice. PICALM knockdown decreased soluble and insoluble Aβ levels and amyloid plaque load in the hippocampus. Conversely, PICALM overexpression increased Aβ levels and amyloid plaque load. These data indicate that PICALM, an adaptor protein involved in clathrin-mediated endocytosis, regulates APP internalization and subsequent Aβ generation. PICALM contributes to amyloid plaque load in brain likely via its effect on Aβ metabolism.


The Journal of Neuroscience | 2014

Enhancing Astrocytic Lysosome Biogenesis Facilitates Aβ Clearance and Attenuates Amyloid Plaque Pathogenesis

Qingli Xiao; Ping Yan; Xiucui Ma; Haiyan Liu; Ronaldo Perez; Alec Zhu; Ernesto R. Gonzales; Jack M. Burchett; Dorothy R. Schuler; John R. Cirrito; Abhinav Diwan; Jin-Moo Lee

In sporadic Alzheimers disease (AD), impaired Aβ removal contributes to elevated extracellular Aβ levels that drive amyloid plaque pathogenesis. Extracellular proteolysis, export across the blood–brain barrier, and cellular uptake facilitate physiologic Aβ clearance. Astrocytes can take up and degrade Aβ, but it remains unclear whether this function is insufficient in AD or can be enhanced to accelerate Aβ removal. Additionally, age-related dysfunction of lysosomes, the major degradative organelles wherein Aβ localizes after uptake, has been implicated in amyloid plaque pathogenesis. We tested the hypothesis that enhancing lysosomal function in astrocytes with transcription factor EB (TFEB), a master regulator of lysosome biogenesis, would promote Aβ uptake and catabolism and attenuate plaque pathogenesis. Exogenous TFEB localized to the nucleus with transcriptional induction of lysosomal biogenesis and function in vitro. This resulted in significantly accelerated uptake of exogenously applied Aβ42, with increased localization to and degradation within lysosomes in C17.2 cells and primary astrocytes, indicating that TFEB is sufficient to coordinately enhance uptake, trafficking, and degradation of Aβ. Stereotactic injection of adeno-associated viral particles carrying TFEB driven by a glial fibrillary acidic protein promoter was used to achieve astrocyte-specific expression in the hippocampus of APP/PS1 transgenic mice. Exogenous TFEB localized to astrocyte nuclei and enhanced lysosome function, resulting in reduced Aβ levels and shortened half-life in the brain interstitial fluid and reduced amyloid plaque load in the hippocampus compared with control virus-injected mice. Therefore, activation of TFEB in astrocytes is an effective strategy to restore adequate Aβ removal and counter amyloid plaque pathogenesis in AD.


The Journal of Neuroscience | 2008

Methylprednisolone Protects Oligodendrocytes But Not Neurons after Spinal Cord Injury

Jin-Moo Lee; Ping Yan; Qingli Xiao; Shawei Chen; Kuang Yung Lee; Chung Y. Hsu; Jan Xu

Methylprednisolone (MP) is used to treat a variety of neurological disorders involving white matter injury, including multiple sclerosis, acute disseminated encephalomyelitis, and spinal cord injury (SCI). Although its mechanism of action has been attributed to anti-inflammatory or antioxidant properties, we examined the possibility that MP may have direct neuroprotective activities. Neurons and oligodendrocytes treated with AMPA or staurosporine died within 24 h after treatment. MP attenuated oligodendrocyte death in a dose-dependent manner; however, neurons were not rescued by the same doses of MP. This protective effect was reversed by the glucocorticoid receptor (GR) antagonist (11, 17)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one (RU486) and small interfering RNA directed against GR, suggesting a receptor-dependent mechanism. MP reversed AMPA-induced decreases in the expression of anti-apoptotic Bcl-xL, caspase-3 activation, and DNA laddering, suggesting anti-apoptotic activity in oligodendrocytes. To examine whether MP demonstrated this selective protection in vivo, neuronal and oligodendrocyte survival was assessed in rats subjected to spinal cord injury (SCI); groups of rats were treated with or without MP in the presence or absence of RU486. Eight days after SCI, MP significantly increased oligodendrocytes (CC-1-immunoreactive cells) after SCI, but neuronal (neuronal-specific nuclear protein-immunoreactive cells) number remained unchanged; RU486 reversed this protective effect. MP also inhibited SCI-induced decreases in Bcl-xL and caspase-3 activation. Consistent with these findings, the volume of demyelination, assessed by Luxol fast blue staining, was attenuated by MP and reversed by RU486. These results suggest that MP selectively inhibits oligodendrocyte but not neuronal cell death via a receptor-mediated action and may be a mechanism for its limited protective effect after SCI.


The Journal of Neuroscience | 2009

STAT5 Mediates Antiapoptotic Effects of Methylprednisolone on Oligodendrocytes

Jan Xu; Shawei Chen; Hong Chen; Qingli Xiao; Chung Y. Hsu; Drew G. Michael; Jianxin Bao

Methylprednisolone (MP), a synthetic glucocorticoid agonist, is widely used for the clinical therapy of white matter diseases in the nervous system, such as spinal cord injury and multiple sclerosis. In addition to its potent anti-inflammatory and antioxidant properties, we recently discovered a selective antiapoptotic effect of MP on oligodendrocytes via the activation of the glucocorticoid receptor (GR) and the upregulation of bcl-XL, a splicing isoform of the bcl-x gene. Based on published findings of the functional interactions between GR and STAT5, a transcription factor from the family of signal transducers and activators of transcription (STAT), we examined whether the glucocorticoid signaling pathway interacts with STAT5 to upregulate bcl-XL and protect oligodendrocytes. We show herein that (1) the GR and STAT5 complex is present on the STAT5-binding site of the bcl-x promoter region in oligodendrocytes; (2) the overexpression of an activated form of STAT5 prevents α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced oligodendrocyte cell death; and (3) this prevention is lost when the STAT5 gene is knocked down. Thus, our results provide one molecular mechanism underlying the postinjury protective effects of oligodendrocytes by stress hormones.


Biochemical Journal | 2005

Characterization of cis-regulatory elements of the vascular endothelial growth inhibitor gene promoter

Qingli Xiao; Chung Y. Hsu; Hong Chen; Xiucui Ma; Jan Xu; Jin-Moo Lee

VEGI (vascular endothelial growth inhibitor), a member of the tumour necrosis factor superfamily, has been reported to inhibit endothelial cell proliferation, angiogenesis and tumour growth. We identified and cloned approx. 2.2 kb of the VEGI promoter from mouse cerebral endothelial cells. The promoter contained an atypical TATA-box-binding protein sequence TAAAAAA residing at -32/-26 relative to the transcription initiation site (+1), 83 bp upstream from the ATG start codon. To investigate critical sequences in the VEGI promoter, a series of deleted and truncated segments were constructed from a 2300 bp promoter construct (-2201/+96) linked to a luciferase reporter gene. Transient transfection of cerebral microvascular cells (bEND.3) and rat C6 glioma cells demonstrated that a 1700 bp deletion from the -2201 to -501 did not significantly affect promoter activity; however, a truncated construct (-501/+96) lacking the region between -312 and -57 resulted in nearly 90% loss of promoter activity. A consensus NF-kappaB (nuclear factor kappaB) and several SP1 (specificity protein-1)-binding sequences were identified within the deleted segment. Supershift analysis revealed that NF-kappaB subunits, p50 and p65, interacted with the VEGI promoter. Exposure of cerebral endothermic cells to the pro-inflammatory cytokine, tumour necrosis factor-alpha, increased VEGI mRNA levels and DNA-binding activities, whereas an NF-kappaB inhibitor attenuated this increase. In addition, p65 overexpression enhanced, whereas p50 overexpression decreased, the luciferase activity. Furthermore, mutation of the NF-kappaB DNA binding site blocked this p65- and tumour necrosis factor-alpha-induced luciferase activity. These findings suggest that the transcription factor NF-kappaB plays an important role in the regulation of VEGI expression.


Biochimica et Biophysica Acta | 2009

Dexamethasone Inhibits Camptothecin-Induced Apoptosis in C6-Glioma via Activation of Stat5/Bcl-xL Pathway

Yi-Hua Qian; Qingli Xiao; Hong Chen; Jan Xu

Dexamethasone (DX) induces apoptosis resistance in most solid malignant tumors during co-treatment with chemotherapy agents, such as camptothecin (CAM). In this study, we investigated the mechanism by which DX reduces chemotherapy efficiency in C6-glioma. DX reduced CAM-increased DNA fragmentation and caspase-3 activation. The DXs protection was negated by RU486, an antagonist of glucocorticoid receptor (GR). DX itself increased anti-apoptotic gene, Bcl-xL expression, and its transcription factor, signaling transducer and activator of transcription 5 (Stat5), DNA binding activity and phospho-Stat5 expression. DX blocked the CAM-decreased Bcl-xL and phospho-Stat5 expression, and Stat5 binding activity. RU486 negated DXs actions. To determine whether Stat5 regulates Bcl-xL expression in CAM-induced cell death, C6-glioma was infected with an adenovirus containing a constitutively activated Stat5-GFP (Ad-Stat5ca). Overexpression of Stat5ca increased Bcl-xL and decreased CAM-induced cell death compared to control adenovirus infected cells; whereas Stat5 siRNA decreased DX-induced Bcl-xL and increased cell death. Phospho-Stat5 expression was observed in the nuclear extract by co-immunoprecipitation with an anti-GR antibody, indicating that Stat5 and GR were interactive and formed a complex in the nuclei. These results suggest that DXs prevention from CAM-induced apoptosis and RU486s antagonism of DXs protection may be through Stat5/Bcl-xL signal pathway regulated by a GR.

Collaboration


Dive into the Qingli Xiao's collaboration.

Top Co-Authors

Avatar

Jin-Moo Lee

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ping Yan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John R. Cirrito

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David M. Holtzman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jan Xu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Hu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yan Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Andrew W. Kraft

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ernesto R. Gonzales

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ernie Gonzales

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge