Qingqing Wei
Georgia Regents University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qingqing Wei.
Kidney International | 2012
Man Jiang; Qingqing Wei; Guie Dong; Masaaki Komatsu; Yunchao Su; Zheng Dong
Autophagy is induced in renal tubular cells during acute kidney injury, however, whether this is protective or injurious remains controversial. We address this question by pharmacologic and genetic blockade of autophagy using mouse models of cisplatin- and ischemia-reperfusion induced acute kidney injury. Chloroquine, a pharmacological inhibitor of autophagy, blocked autophagic flux and enhanced acute kidney injury in both models. Rapamycin, however, activated autophagy and protected against cisplatin-induced acute kidney injury. We also established a renal proximal tubule-specific autophagy-related gene 7 knockout mouse model shown to be defective in both basal and cisplatin induced autophagy in kidneys. Compared with wild-type littermates, these knockout mice were markedly more sensitive to cisplatin-induced acute kidney injury as indicated by renal functional loss, tissue damage, and apoptosis. Mechanistically, these knockout mice had heightened activation of p53 and c-Jun N terminal kinase, signaling pathways contributing to cisplatin acute kidney injury. Proximal tubular cells isolated from the knockout mice were more sensitive to cisplatin-induced apoptosis than cells from wild-type mice. In addition, the knockout mice were more sensitive to renal ischemia-reperfusion injury than their wild-type littermates. Thus, our results establish a renoprotective role of tubular cell autophagy in acute kidney injury where it may interfere with cell killing mechanisms.
Journal of The American Society of Nephrology | 2010
Qingqing Wei; Kirti Bhatt; Hong Zhi He; Qing Sheng Mi; Volker H. Haase; Zheng Dong
MicroRNAs are endogenous, noncoding, small RNAs that regulate expression and function of genes, but little is known about regulation of microRNA in the kidneys under normal or pathologic states. Here, we generated a mouse model in which the proximal tubular cells lack Dicer, a key enzyme for microRNA production. These mice had normal renal function and histology under control conditions despite a global downregulation of microRNAs in the renal cortex; however, these animals were remarkably resistant to renal ischemia-reperfusion injury (IRI), showing significantly better renal function, less tissue damage, lower tubular apoptosis, and improved survival compared with their wild-type littermates. Microarray analysis showed altered expression of specific microRNAs during renal IRI. Taken together, these results demonstrate evidence for a pathogenic role of Dicer and associated microRNAs in renal IRI.
Journal of The American Society of Nephrology | 2014
Dongshan Zhang; Yu Liu; Qingqing Wei; Yuqing Huo; Kebin Liu; Fuyou Liu; Zheng Dong
A pathogenic role of p53 in AKI was suggested a decade ago but remains controversial. Indeed, recent work indicates that inhibition of p53 protects against ischemic AKI in rats but exacerbates AKI in mice. One intriguing possibility is that p53 has cell type-specific roles in AKI. To determine the role of tubular p53, we generated two conditional gene knockout mouse models, in which p53 is specifically ablated from proximal tubules or other tubular segments, including distal tubules, loops of Henle, and medullary collecting ducts. Proximal tubule p53 knockout (PT-p53-KO) mice were resistant to ischemic and cisplatin nephrotoxic AKI, which was indicated by the analysis of renal function, histology, apoptosis, and inflammation. However, other tubular p53 knockout (OT-p53-KO) mice were sensitive to AKI. Mechanistically, AKI associated with the upregulation of several known p53 target genes, including Bax, p53-upregulated modulator of apoptosis-α, p21, and Siva, and this association was attenuated in PT-p53-KO mice. In global expression analysis, ischemic AKI induced 371 genes in wild-type kidney cortical tissues, but the induction of 31 of these genes was abrogated in PT-p53-KO tissues. These 31 genes included regulators of cell death, metabolism, signal transduction, oxidative stress, and mitochondria. These results suggest that p53 in proximal tubular cells promotes AKI, whereas p53 in other tubular cells does not.
Journal of The American Society of Nephrology | 2010
Xiaoning Li; Navjotsingh Pabla; Qingqing Wei; Guie Dong; Robert O. Messing; Cong Yi Wang; Zheng Dong
Proteinuria may contribute to progressive renal damage by inducing tubulointerstitial inflammation, fibrosis, and tubular cell injury and death, but the mechanisms underlying these pathologic changes remain largely unknown. Here, in a rat kidney proximal tubular cell line (RPTC), albumin induced apoptosis in a time- and dose-dependent manner. Caspase activation accompanied albumin-induced apoptosis, and general caspase inhibitors could suppress this activation. In addition, Bcl-2 transfection inhibited apoptosis and attenuated albumin-induced Bax translocation to mitochondria and cytochrome c release from the organelles, further confirming a role for the intrinsic pathway of apoptosis in albuminuria-associated tubular apoptosis. We observed phosphorylation and activation of PKC-delta early during treatment of RPTC cells with albumin. Rottlerin, a pharmacologic inhibitor of PKC-delta, suppressed albumin-induced Bax translocation, cytochrome c release, and apoptosis. Moreover, a dominant-negative mutant of PKC-delta blocked albumin-induced apoptosis in RPTC cells. In vivo, we observed activated PKC-delta in proteinuric kidneys of streptozotocin-induced diabetic mice and in kidneys after direct albumin overload. Notably, albumin overload induced apoptosis in renal tubules, which was less severe in PKC-delta-knockout mice. Taken together, these results suggest that activation of PKC-delta promotes tubular cell injury and death during albuminuria, broadening our understanding of the pathogenesis of progressive proteinuric kidney diseases.
Iubmb Life | 2013
Qingqing Wei; Qing Sheng Mi; Zheng Dong
MicroRNAs (miRNA) are endogenous short noncoding RNAs, which regulate virtually all major cellular processes by inhibiting target gene expression. In kidneys, miRNAs have been implicated in renal development, homeostasis, and physiological functions. In addition, miRNAs play important roles in the pathogenesis of various renal diseases, including renal carcinoma, diabetic nephropathy, acute kidney injury, hypertensive nephropathy, polycystic kidney disease, and others. Furthermore, miRNAs may have great values as biomarkers in different kidney diseases.
PLOS ONE | 2014
Qingqing Wei; Xiao Xiao; Paul Fogle; Zheng Dong
Changes of metabolism have been implicated in renal ischemia/reperfusion injury (IRI). However, a global analysis of the metabolic changes in renal IRI is lacking and the association of the changes with ischemic kidney injury and subsequent recovery are unclear. In this study, mice were subjected to 25 minutes of bilateral renal IRI followed by 2 hours to 7 days of reperfusion. Kidney injury and subsequent recovery was verified by serum creatinine and blood urea nitrogen measurements. The metabolome of plasma, kidney cortex, and medulla were profiled by the newly developed global metabolomics analysis. Renal IRI induced overall changes of the metabolome in plasma and kidney tissues. The changes started in renal cortex, followed by medulla and plasma. In addition, we identified specific metabolites that may contribute to early renal injury response, perturbed energy metabolism, impaired purine metabolism, impacted osmotic regulation and the induction of inflammation. Some metabolites, such as 3-indoxyl sulfate, were induced at the earliest time point of renal IRI, suggesting the potential of being used as diagnostic biomarkers. There was a notable switch of energy source from glucose to lipids, implicating the importance of appropriate nutrition supply during treatment. In addition, we detected the depressed polyols for osmotic regulation which may contribute to the loss of kidney function. Several pathways involved in inflammation regulation were also induced. Finally, there was a late induction of prostaglandins, suggesting their possible involvement in kidney recovery. In conclusion, this study demonstrates significant changes of metabolome kidney tissues and plasma in renal IRI. The changes in specific metabolites are associated with and may contribute to early injury, shift of energy source, inflammation, and late phase kidney recovery.
Journal of The American Society of Nephrology | 2015
Kirti Bhatt; Qingqing Wei; Navjotsingh Pabla; Guie Dong; Qing Sheng Mi; Mingyu Liang; Changlin Mei; Zheng Dong
Ischemia-reperfusion injury contributes to tissue damage and organ failure in clinical settings, but the underlying mechanism remains elusive and effective therapies are still lacking. Here, we identified microRNA 687 (miR-687) as a key regulator and therapeutic target in renal ischemia-reperfusion injury. We show that miR-687 is markedly upregulated in the kidney during renal ischemia-reperfusion in mice and in cultured kidney cells during hypoxia. MiR-687 induction under these conditions was mediated by hypoxia-inducible factor-1 (HIF-1). Upon induction in vitro, miR-687 repressed the expression of phosphatase and tensin homolog (PTEN) and facilitated cell cycle progression and apoptosis. Blockade of miR-687 preserved PTEN expression and attenuated cell cycle activation and renal apoptosis, resulting in protection against kidney injury in mice. Collectively, these results unveil a novel HIF-1/miR-687/PTEN signaling pathway in ischemia-reperfusion injury that may be targeted for therapy.
Journal of The American Society of Nephrology | 2016
Qingqing Wei; Yong Liu; Pengyuan Liu; Jielu Hao; Mingyu Liang; Qing Sheng Mi; Jian Kang Chen; Zheng Dong
MicroRNAs have been implicated in ischemic AKI. However, the specific microRNA species that regulates ischemic kidney injury remains unidentified. Our previous microarray analysis revealed microRNA-489 induction in kidneys of mice subjected to renal ischemia-reperfusion. In this study, we verified the induction of microRNA-489 during ischemic AKI in mice and further examined the underlying mechanisms. Hypoxia-inducible factor-1α deficiency associated with diminished microRNA-489 induction in cultured rat proximal tubular cells subjected to hypoxia and kidney tissues of mice after renal ischemia-reperfusion injury. Moreover, genomic analysis revealed that microRNA-489 is intronic in the calcitonin receptor gene, and chromatin immunoprecipitation assays showed increased binding of hypoxia-inducible factor-1 to a specific site in the calcitonin receptor gene promoter after hypoxia. Inhibition of microRNA-489 increased apoptosis in renal tubular cells after ATP depletion injury in vitro, whereas microRNA-489 mimics mediated protection. In mice, inhibition of microRNA-489 enhanced tubular cell death and ischemic AKI without significantly affecting tubular cell proliferation. Deep sequencing identified 417 mRNAs that were recruited to the RNA-induced silencing complex by microRNA-489. Of the identified mRNAs, 127 contain microRNA-489 targeting sites, and of those, 18 are involved in the cellular stress response, including the poly(ADP-ribose) polymerase 1 gene implicated in ischemic kidney injury. Sequence analysis and in vitro studies validated poly(ADP-ribose) polymerase 1 as a microRNA-489 target. Together, these results suggest that microRNA-489 is induced via hypoxia-inducible factor-1 during ischemic AKI to protect kidneys by targeting relevant genes.
Journal of The American Society of Nephrology | 2016
Jiandong Zhang; Nathan P. Rudemiller; Mehul B. Patel; Qingqing Wei; Norah S. Karlovich; Alexander D. Jeffs; Min Wu; Matthew A. Sparks; Jamie R. Privratsky; Marcela Herrera; Susan B. Gurley; Sergei A. Nedospasov; Steven D. Crowley
Inappropriate activation of the renin-angiotensin system (RAS) contributes to many CKDs. However, the role of the RAS in modulating AKI requires elucidation, particularly because stimulating type 1 angiotensin II (AT1) receptors in the kidney or circulating inflammatory cells can have opposing effects on the generation of inflammatory mediators that underpin the pathogenesis of AKI. For example, TNF-α is a fundamental driver of cisplatin nephrotoxicity, and generation of TNF-α is suppressed or enhanced by AT1 receptor signaling in T lymphocytes or the distal nephron, respectively. In this study, cell tracking experiments with CD4-Cre mT/mG reporter mice revealed robust infiltration of T lymphocytes into the kidney after cisplatin injection. Notably, knockout of AT1 receptors on T lymphocytes exacerbated the severity of cisplatin-induced AKI and enhanced the cisplatin-induced increase in TNF-α levels locally within the kidney and in the systemic circulation. In contrast, knockout of AT1 receptors on kidney epithelial cells ameliorated the severity of AKI and suppressed local and systemic TNF-α production induced by cisplatin. Finally, disrupting TNF-α production specifically within the renal tubular epithelium attenuated the AKI and the increase in circulating TNF-α levels induced by cisplatin. These results illustrate discrepant tissue-specific effects of RAS stimulation on cisplatin nephrotoxicity and raise the concern that inflammatory mediators produced by renal parenchymal cells may influence the function of remote organs by altering systemic cytokine levels. Our findings suggest selective inhibition of AT1 receptors within the nephron as a promising intervention for protecting patients from cisplatin-induced nephrotoxicity.
Kidney International | 2017
Liyu He; Qingqing Wei; Jing Liu; Mixuan Yi; Yu Liu; Hong Liu; Lin Sun; Youming Peng; Fuyou Liu; Manjeri A. Venkatachalam; Zheng Dong
Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected. Although AKI-to-CKD transition has been intensively studied, the information of AKI on CKD is very limited. Nonetheless, AKI, when occurring in patients with CKD, is known to be more severe and difficult to recover. CKD is associated with significant changes in cell signaling in kidney tissues, including the activation of transforming growth factor-β, p53, hypoxia-inducible factor, and major developmental pathways. At the cellular level, CKD is characterized by mitochondrial dysfunction, oxidative stress, and aberrant autophagy. At the tissue level, CKD is characterized by chronic inflammation and vascular dysfunction. These pathologic changes may contribute to the heightened sensitivity of, and nonrecovery from, AKI in patients with CKD.