Qingshang Yan
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qingshang Yan.
Journal of Biological Chemistry | 2002
Ming Lu; Tong Wang; Qingshang Yan; Xinbo Yang; Ke Dong; Mark A. Knepper; WenHui Wang; Gerhard Giebisch; Gary E. Shull; Steven C. Hebert
The ROMK (Kir1.1; Kcnj1) gene is believed to encode the apical small conductance K+channels (SK) of the thick ascending limb (TAL) and cortical collecting duct (CCD). Loss-of-function mutations in the human ROMK gene cause Bartters syndrome with renal Na+ wasting, consistent with the role of this channel in apical K+ recycling in the TAL that is crucial for NaCl reabsorption. However, the mechanism of renal K+ wasting and hypokalemia that develop in individuals with ROMK Bartters syndrome is not apparent given the proposed loss of the collecting duct SK channel. Thus, we generated a colony of ROMK null mice with ∼25% survival to adulthood that provides a good model for ROMK Bartters syndrome. The remaining 75% of null mice die in less than 14 days after birth. The surviving ROMK null mice have normal gross renal morphology with no evidence of significant hydronephrosis, whereas non-surviving null mice exhibit marked hydronephrosis. ROMK protein expression was absent in TAL and CCD from null mice but exhibited normal abundance and localization in wild-type littermates. ROMK null mice were polyuric and natriuretic with an elevated hematocrit consistent with mild extracellular volume depletion. SK channel activity in TAL and CCD was assessed by patch clamp analysis in ROMK wild-type ROMK(+/+), heterozygous ROMK(+/−), and null ROMK(−/−) mice. In 313 patches with successful seals from the three ROMK genotypes, SK channel activity in ROMK (+/+ and +/−) exhibited normal single channel kinetics. The expression frequencies are as follows: 67 (TAL) and 58% (CCD) in ROMK(+/+); about half that of the wild-type in ROMK(+/−), being 38 (TAL) and 25% (CCD); absent in both TAL or CCD in ROMK(−/−) between 2 and 5 weeks in 15 mice (61 and 66 patches, respectively). The absence of SK channel activity in ROMK null mice demonstrates that ROMK is essential for functional expression of SK channels in both TAL and CCD. Despite loss of ROMK expression, the normokalemic null mice exhibited significantly increased kaliuresis, indicating alternative mechanisms for K+absorption/secretion in the nephron.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Jennifer L. Pluznick; Dong Jing Zou; Xiaohong Zhang; Qingshang Yan; Diego J. Rodriguez-Gil; Christoph Eisner; Erika Wells; Charles A. Greer; Tong Wang; Stuart Firestein; Jurgen Schnermann; Michael J. Caplan
Olfactory-like chemosensory signaling occurs outside of the olfactory epithelium. We find that major components of olfaction, including olfactory receptors (ORs), olfactory-related adenylate cyclase (AC3) and the olfactory G protein (Golf), are expressed in the kidney. AC3 and Golf colocalize in renal tubules and in macula densa (MD) cells which modulate glomerular filtration rate (GFR). GFR is significantly reduced in AC3−/− mice, suggesting that AC3 participates in GFR regulation. Although tubuloglomerular feedback is normal in these animals, they exhibit significantly reduced plasma renin levels despite up-regulation of COX-2 expression and nNOS activity in the MD. Furthermore, at least one member of the renal repertoire of ORs is expressed in a MD cell line. Thus, key components of olfaction are expressed in the renal distal nephron and may play a sensory role in the MD to modulate both renin secretion and GFR.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Yi Duan; Nanami Gotoh; Qingshang Yan; Zhaopeng Du; Alan M. Weinstein; Tong Wang; Sheldon Weinbaum
In this study, we demonstrate that fluid shear stress (FSS)-induced actin cytoskeletal reorganization and junctional formation in renal epithelial cells are nearly completely opposite the corresponding changes in vascular endothelial cells (ECs) [Thi MM et al. (2004) Proc Natl Acad Sci USA 101:16483–16488]. Mouse proximal tubule cells (PTCs) were subjected to 5 h of FSS (1 dyn/cm2) to investigate the dynamic responses of the cytoskeletal distribution of filamentous actin (F-actin), ZO-1, E-cadherin, vinculin, and paxillin to FSS. Immunofluorescence analysis revealed that FSS caused basal stress fiber disruption, more densely distributed peripheral actin bands (DPABs), and the formation of both tight junctions (TJs) and adherens junctions (AJs). A dramatic reinforcement of vinculin staining was found at the cell borders as well as the cell interior. These responses were abrogated by the actin-disrupting drug, cytochalasin D. To interpret these results, we propose a “junctional buttressing” model for PTCs in which FSS enables the DPABs, TJs, and AJs to become more tightly connected. In contrast, in the “bumper-car” model for ECs, all junctional connections were severely disrupted by FSS. This “junctional buttressing” model explains why a FSS of only 1/10 of that used in the EC study can cause a similarly dramatic, cytoskeletal response in these tall, cuboidal epithelial cells; and why junctional buttressing between adjacent cells may benefit renal epithelium in maximizing flow-activated, brush border-dependent, transcellular salt and water reabsorption.
American Journal of Physiology-renal Physiology | 2008
Carsten A. Wagner; Dominique Loffing-Cueni; Qingshang Yan; Nicole Schulz; Panagiotis Fakitsas; Monique Carrel; Tong Wang; François Verrey; John P. Geibel; Gerhard Giebisch; Steven C. Hebert; Johannes Loffing
Bartters syndrome represents a group of hereditary salt- and water-losing renal tubulopathies caused by loss-of-function mutations in proteins mediating or regulating salt transport in the thick ascending limb (TAL) of Henles loop. Mutations in the ROMK channel cause type II antenatal Bartters syndrome that presents with maternal polyhydramnios and postnatal life-threatening volume depletion. We have developed a colony of Romk null mice showing a Bartter-like phenotype and with increased survival to adulthood, suggesting the activation of compensatory mechanisms. To test the hypothesis that upregulation of Na(+)-transporting proteins in segments distal to the TAL contributes to compensation, we studied expression of salt-transporting proteins in ROMK-deficient (Romk(-/-)) mice. Plasma aldosterone was 40% higher and urinary PGE(2) excretion was 1.5-fold higher in Romk(-/-) compared with wild-type littermates. Semiquantitative immunoblotting of kidney homogenates revealed decreased abundances of proximal tubule Na(+)/H(+) exchanger (NHE3) and Na(+)-P(i) cotransporter (NaPi-IIa) and TAL-specific Na(+)-K(+)-2Cl(-)-cotransporter (NKCC2/BSC1) in Romk(-/-) mice, while the distal convoluted tubule (DCT)-specific Na(+)-Cl(-) cotransporter (NCC/TSC) was markedly increased. The abundance of the alpha-,beta-, and gamma-subunits of the epithelial Na(+) channel (ENaC) was slightly increased, although only differences for gamma-ENaC reached statistical significance. Morphometry revealed a fourfold increase in the fractional volume of DCT but not of connecting tubule (CNT) and collecting duct (CCD). Consistently, CNT and CD of Romk(-/-) mice revealed no apparent increase in the luminal abundance of the ENaC compared with those of wild-type mice. These data suggest that the loss of ROMK-dependent Na(+) absorption in the TAL is compensated predominately by upregulation of Na(+) transport in downstream DCT cells. These adaptive changes in Romk(-/-) mice may help to limit renal Na(+) loss, and thereby, contribute to survival of these mice.
American Journal of Physiology-renal Physiology | 2008
Alessandra Cantone; Xinbo Yang; Qingshang Yan; Gerhard Giebisch; Steven C. Hebert; Tong Wang
ROMK-deficient (Romk(-/-)) mice exhibit polyuria, natriuresis, and kaliuresis similar to individuals with type II Bartters form of hyperprostaglandin E syndrome (HPS; antenatal Bartters syndrome). In the present study, we utilized both metabolic and clearance studies to define the contributions of specific distal nephron segments to the renal salt wasting in these mice. The effects of furosemide, hydrochlorothiazide, and benzamil on urinary Na(+) and K(+) excretion in both wild-type (Romk(+/+)) and Romk(-/-) mice were used to assess and compare salt transport by the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2)-expressing thick ascending limb (TAL), the Na(+)-Cl(-) cotransporter (NCC)-expressing distal convoluted tubule (DCT1/DCT2), and the epithelial Na(+) channel (ENaC)-expressing connecting segment (CNT) and collecting duct (CD), respectively. Whole kidney glomerular filtration rate was reduced by 47% in Romk(-/-) mice. Furosemide-induced increments in the fractional excretion rate of Na(+) and K(+) and absolute excretion of Na(+) and K(+) were significantly blunted in Romk(-/-) mice, consistent with a major salt transport defect in the TAL. In contrast, hydrochlorothiazide produced an exaggerated natriuresis in Romk(-/-) mice, indicating upregulation of salt absorption by the DCT. Benzamil resulted in a similar increment in absolute Na excretion in both Romk(-/-) and Romk(+/+), indicating no significant upregulation of Na(+) transport by ENaC in ROMK null mice. Moreover, hydrochlorothiazide increased the fractional K(+) excretion rate in Romk(-/-) mice, confirming our recent observation that maxi-K channels contribute to distal K(+) secretion in the absence of ROMK.
Cytoskeleton | 2010
Nanami Gotoh; Qingshang Yan; Zhaopeng Du; Daniel Biemesderfer; Michael Kashgarian; Mark S. Mooseker; Tong Wang
Myosin VI (Myo6) is an actin‐based molecular motor involved in clathrin‐mediated endocytosis that is highly expressed in the renal proximal tubule brush border. We investigated the renal physiological consequences of loss of Myo6 function by performing renal clearance and physiological measurements on Myo6 functional null Snells waltzer (sv/sv) and control heterozygous (+/sv) mice. Sv/sv mice showed reduced body weight and elevated blood pressure compared with controls; no differences were observed for glomerular flow rate, urine volume, blood acid‐base parameters, and plasma concentrations and urinary excretions of Na+ and K+. To assess the integrity of endocytosis‐mediated protein absorption by the kidney, urinary albumin excretion was measured, and the proximal tubular uptake of intravenously injected endocytic marker horseradish peroxidase (HRP) was examined. Albumin excretion was increased nearly 4‐fold in sv/sv mice relative to controls. Conversely, HRP uptake was reduced and delayed in proximal tubule cells of the sv/sv kidney observed by electron microscopy at 5 and 30 min after injection. Consistent with impaired endocytosis, we also observed defects indicating alterations along the endocytic pathway in sv/sv proximal tubule cells: (1) decreased membrane association of the clathrin adaptor subunit, adaptin beta, and Disabled‐2 (Dab2) after sedimentation of renal homogenates and (2) reduced apical vacuole number. In addition, proximal tubular dilation and fibrosis, likely secondary effects of the loss of Myo6, were observed in sv/sv kidneys. These results indicate that Myo6 plays a key role in endocytosis‐mediated protein absorption in the mouse kidney proximal tubule.
American Journal of Pathology | 2010
Ethan P. Marin; Gilbert W. Moeckel; Rafia S. Al-Lamki; John R. Bradley; Qingshang Yan; Tong Wang; Paulette Wright; Jun Yu; William C. Sessa
Nogo-B is a member of the reticulon family of proteins that has been implicated in diverse forms of vascular injury. Although Nogo-B is expressed in renal tissues, its localization and function in the kidney have not been examined. Here, we report that Nogo-B is expressed specifically in the epithelial cells of the distal nephron segments in the murine kidney. After unilateral ureteral obstruction (UUO) and ischemia/reperfusion, Nogo-B gene and protein levels increased dramatically in the kidney. This increase was driven in part by injury-induced de novo expression in proximal tubules. Examination of Nogo-B immunostaining in human biopsy specimens from patients with acute tubular necrosis showed similar increases in Nogo-B in cortical tubules. Mice genetically deficient in Nogo-A/B were indistinguishable from wild-type (WT) mice based on histological appearance and serum analyses. After UUO, there was a significant delay in recruitment of macrophages to the kidney in the Nogo-A/B-deficient mice. However, measurements of fibrosis, inflammatory gene expression, and histological damage were not significantly different from WT mice. Thus, Nogo-B is highly expressed in murine kidneys in response to experimental injuries and may serve as a marker of diverse forms of renal injury in tissues from mice and humans. Furthermore, Nogo-B may regulate macrophage recruitment after UUO, although it does not greatly affect the degree of tissue injury or fibrosis in this model.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008
Qingshang Yan; Xinbo Yang; Alessandra Cantone; Gerhard Giebisch; Steven C. Hebert; Tong Wang
ROMK null mice with a high survival rate and varying severity of hydronephrosis provide a good model to study type II Bartter syndrome pathophysiology (26). During the development of such a colony, we found that more male than female null mice survived, 58.7% vs. 33.3%. To investigate the possible mechanism of this difference, we compared the survival rates, renal functions, degree of hydronephrosis, as well as PGE(2) and TXB(2) production between male and female ROMK wild-type and null mice. We observed that female ROMK Bartters mice exhibited lower GFR (0.37 vs. 0.54 ml.min(-1).100 g BW(-1), P < 0.05) and higher fractional Na(+) excretion (0.66% vs. 0.48%, P < 0.05) than male Bartters. No significant differences in acid-base parameters, urinary K(+) excretion, and plasma electrolyte concentrations were observed between sexes. In addition, we assessed the liquid retention rate in the kidney to evaluate the extent of hydronephrosis and observed that 67% of male and 90% of female ROMK null mice were hydronephrotic mice. Urinary PGE(2) excretion was higher in both sexes of ROMK null mice: 1.35 vs. 1.10 ng/24 h in males and 2.90 vs. 0.87 ng/24 h in females. TXB(2) excretion was higher in female mice in both wild-type and ROMK null mice. The increments of urinary PGE(2) and TXB(2) were significantly higher in female null mice than males, 233.33% vs. 22.74% of PGE(2) and 85.67% vs. 20.36% of TXB(2). These data demonstrate a more severe Bartter phenotype in female ROMK null mice, and higher PGE(2) and TXB(2) production may be one of the mechanisms of this manifestation.
American Journal of Physiology-renal Physiology | 2012
Zhaopeng Du; Laxiang Wan; Qingshang Yan; Sheldon Weinbaum; Alan M. Weinstein; Tong Wang
Underlying glomerulotubular balance (GTB) is the impact of axial flow to regulate Na(+) and HCO(3)(-) transport by modulating Na(+)-H(+) exchanger 3 (NHE3) and H-ATPase activity. It is not known whether the cascade of events following a change in flow relies on local angiotensin (ANG II) generation or receptor availability. Mouse tubules were microperfused in vitro at flows of 5 and 20 nl/min, and net fluid (J(v)) and HCO(3)(-) (J(HCO3)) absorption and cell height were measured. Na(+) (J(Na)) and Cl(-) (J(Cl)) absorption and changes in microvillous torque were estimated. Raising flow increased Na(+) and HCO(3)(-) reabsorption but did not change either Cl(-) transport or cell volume. Losartan reduced absolute Na(+) and HCO(3)(-) absorption at both low and high flows but did not affect fractional flow-stimulated transport. Compared with controls, in AT(1a) knockout (KO) mouse tubules, 53% of flow-stimulated Na(+) absorption was abolished, but flow-stimulated HCO(3)(-) absorption was retained at similar levels. The remaining flow-stimulated J(HCO3) was eliminated by the H-ATPase inhibitor bafilomycin. Inhibition of the AT(2) receptor by PD123319 increased both J(Na) and J(HCO3) but did not affect flow-mediated fractional changes. NHE3 expression at the protein level was reduced in AT(1a) KO mice kidneys. We conclude that 1) although the AT(1a) receptor is necessary for flow to impact NHE3, the effect on H(+)-ATPase is independent of AT(1a); 2) the small flow-mediated changes in cell volume suggest a coordinate flow effect on both luminal and basolateral transporters; and 3) there is no evidence of flow-dependent Cl(-) transport, and thus no evidence for convective paracellular Cl(-) transport in mouse tubules.
American Journal of Physiology-renal Physiology | 2012
Zhaopeng Du; Qingshang Yan; Laxiang Wan; Sheldon Weinbaum; Alan M. Weinstein; Tong Wang
In response to volume expansion, locally generated dopamine decreases proximal tubule reabsorption by reducing both Na/H-exchanger 3 (NHE3) and Na-K-ATPase activity. We have previously demonstrated that mouse proximal tubules in vitro respond to changes in luminal flow with proportional changes in Na(+) and HCO(3)(-) reabsorption and have suggested that this observation underlies glomerulotubular balance. In the present work, we investigate the impact of dopamine on the sensitivity of reabsorptive fluxes to changes in luminal flow. Mouse proximal tubules were microperfused in vitro at low and high flow rates, and volume and HCO(3)(-) reabsorption (J(v) and J(HCO3)) were measured, while Na(+) and Cl(-) reabsorption (J(Na) and J(Cl)) were estimated. Raising luminal flow increased J(v), J(Na), and J(HCO3) but did not change J(Cl). Luminal dopamine did not change J(v), J(Na), and J(HCO3) at low flow rates but completely abolished the increments of Na(+) absorption by flow and partially inhibited the flow-stimulated HCO(3)(-) absorption. The remaining flow-stimulated HCO(3)(-) absorption was completely abolished by bafilomycin. The DA1 receptor blocker SCH23390 and the PKA inhibitor H89 blocked the effect of exogenous dopamine and produced a two to threefold increase in the sensitivity of proximal Na(+) reabsorption to luminal flow rate. Under the variety of perfusion conditions, changes in cell volume were small and did not always parallel changes in Na(+) transport. We conclude that 1) dopamine inhibits flow-stimulated NHE3 activity by activation of the DA1 receptor via a PKA-mediated mechanism; 2) dopamine has no effect on flow-stimulated H-ATPase activity; 3) there is no evidence of flow stimulation of Cl(-) reabsorption; and 4) the impact of dopamine is a coordinated modulation of both luminal and peritubular Na(+) transporters.