Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qingsong Hu is active.

Publication


Featured researches published by Qingsong Hu.


The EMBO Journal | 2016

TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion.

Qin Xia; Hongfeng Wang; Zongbing Hao; Cheng Fu; Qingsong Hu; Feng Gao; Haigang Ren; Dong Chen; Junhai Han; Zheng Ying; Guanghui Wang

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA‐binding protein 43 (TDP‐43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP‐43 is a multi‐functional protein involved in RNA processing and a large number of TDP‐43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP‐43‐linked neurodegeneration remain elusive. In this study, we found that loss of TDP‐43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy–lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP‐43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP‐43‐depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP‐43‐mediated neurodegeneration.


Human Molecular Genetics | 2015

The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway

Feng Gao; Dong Chen; Jianmin Si; Qingsong Hu; Zhenghong Qin; Ming Fang; Guanghui Wang

Mitochondrial dysfunction plays important roles in Parkinsons disease (PD) and the degradation of the damaged mitochondria by the mitochondria quality control system is important for dopaminergic (DA) neuronal survival. BNIP3L/Nix is a mitochondrial outer membrane protein that is required for the selective clearance of mitochondria. Here, we found that the mitochondrial protein BNIP3L acts downstream of the PINK1/PARK2 pathway to induce mitophagy. BNIP3L is a substrate of PARK2 to drive PARK2-mediated mitophagy. The ubiquitination of BNIP3L by PARK2 recruits NBR1 to mitochondria, thereby targeting mitochondria for degradation. BNIP3L rescues mitochondrial defects in pink1 mutant Drosophila but not in park mutant Drosophila, indicating that the clearance of mitochondria induced by BNIP3L depends on the presence of PARK2. In cells intoxicated with mitochondrial complex I inhibitors rotenone, 6-OHDA or MPP(+), the disrupted mitochondria are not appropriately eliminated by mitophagy due to the improper degradation of BNIP3L. Thus, our study demonstrates that BNIP3L, as a substrate of PARK2, promotes mitophagy in the PINK1/PARK2 pathway associated with PD pathogenesis.


PLOS ONE | 2013

Rotenone Directly Induces BV2 Cell Activation via the p38 MAPK Pathway

Feng Gao; Dong Chen; Qingsong Hu; Guanghui Wang

Parkinson’s disease (PD) is the second most common neurodegenerative disease. Although its pathogenesis is still unclear, increasing evidence suggests that mitochondrial dysfunction induced by environmental toxins, such as mitochondrial complex I inhibitors, plays a significant role in the disease process. The microglia in PD brains are highly activated, and inflammation is also an essential element in PD pathogenesis. However, the means by which these toxins activate microglia is still unclear. In the present study, we found that rotenone, a mitochondrial complex I inhibitor, could directly activate microglia via the nuclear factor kappa B (NF-κB) signaling pathway, thereby inducing significantly increased expression of inflammatory cytokines. We further observed that rotenone induced caspase-1 activation and mature IL-1β release, both of which are strictly dependent on p38 mitogen-activated protein kinase (MAPK). The activation of p38 is associated with the presence of reactive oxygen species (ROS) produced by rotenone. Removal of these ROS abrogated the activation of the microglia. Therefore, our data suggest that the environmental toxin rotenone can directly activate microglia through the p38 MAPK pathway.


Acta Pharmacologica Sinica | 2013

Bcl-2-dependent upregulation of autophagy by sequestosome 1/p62 in vitro

Liang Zhou; Hongfeng Wang; Haigang Ren; Dong Chen; Feng Gao; Qingsong Hu; Chen Fu; Ran-jie Xu; Zheng Ying; Guanghui Wang

Aim:To investigate whether sequestosome 1/p62 (p62), a key cargo adaptor protein involved in both the ubiquitin-proteasome system and the autophagy-lysosome system, could directly regulate autophagy in vitro.Methods:HEK 293 cells or HeLa cells were transfected with p62-expressing plasmids or siRNA targeting p62. The cells or the cell lysates were subsequently subjected to immunofluorescence assay, immunoprecipitation assay, or immunoblot analysis. In vitro pulldown assay was used to study the interaction of p62 with Bcl-2.Results:Overexpression of p62 significantly increased the basal level of autophagy in both HEK 293 cells and HeLa cells, whereas knockdown of p62 significantly decreased the basal level of autophagy. In vitro pulldown assay showed that p62 directly interacted with Bcl-2. It was observed in HeLa cells that p62 co-localized with Bcl-2. Furthermore, knockdown of p62 in HEK 293 cells significantly increased the amount of Beclin 1 that co-immunoprecipitated with Bcl-2.Conclusion:p62 induces autophagy by disrupting the association between Bcl-2 and Beclin 1.


Cell Death and Disease | 2015

Induction of COX-2-PGE2 synthesis by activation of the MAPK/ERK pathway contributes to neuronal death triggered by TDP-43-depleted microglia

Qin Xia; Qingsong Hu; Hongfeng Wang; H Yang; Feng Gao; Haigang Ren; Dong Chen; C Fu; L Zheng; X Zhen; Zheng Ying; Gang Wang

Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.


Cell Death and Disease | 2014

The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway.

Ruxiang Xu; Qingsong Hu; Quan-Hong Ma; Cong Liu; Gang Wang

Loss of the mitochondrial protease activity of Omi causes mitochondrial dysfunction, neurodegeneration with parkinsonian features and premature death in mnd2 (motor neuron degeneration 2) mice. However, the detailed mechanisms underlying this pathology remain largely unknown. Here, we report that Omi participates in the process of mitochondrial biogenesis, which has been linked to several neurodegenerative diseases. The mitochondrial biogenesis is deficit in mnd2 mice, evidenced by severe decreases of mitochondrial components, mitochondrial DNA and mitochondrial density. Omi cleaves glycogen synthase kinase 3β (GSK3β), a kinase promoting PPARγ coactivator-1α (PGC-1α) degradation, to regulate PGC-1α, a factor important for the mitochondrial biogenesis. In mnd2 mice, GSK3β abundance is increased and PGC-1α abundance is decreased significantly. Inhibition of GSK3β by SB216763 or overexpression of PGC-1α can restore mitochondrial biogenesis in mnd2 mice or Omi-knockdown N2a cells. Furthermore, there is a significant improvement of the movement ability of mnd2 mice after SB216763 treatment. Thus, our study identified Omi as a novel regulator of mitochondrial biogenesis, involving in Omi protease-deficient-induced neurodegeneration.


Acta Pharmacologica Sinica | 2015

Parkin represses 6-hydroxydopamine-induced apoptosis via stabilizing scaffold protein p62 in PC12 cells

Xiao-ou Hou; Jianmin Si; Haigang Ren; Dong Chen; Hongfeng Wang; Zheng Ying; Qingsong Hu; Feng Gao; Guanghui Wang

Aim:Parkin has been shown to exert protective effects against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in different models of Parkinson disease. In the present study we investigated the molecular mechanisms underlying the neuroprotective action of parkin in vitro.Methods:HEK293, HeLa and PC12 cells were transfected with parkin, parkin mutants, p62 or si-p62. Protein expression and ubiquitination were assessed using immunoblot analysis. Immunoprecipitation assay was performed to identify the interaction between parkin and scaffold protein p62. PC12 and SH-SY5Y cells were treated with 6-OHDA (200 μmol/L), and cell apoptosis was detected using PI and Hoechst staining.Results:In HEK293 cells co-transfected with parkin and p62, parkin was co-immunoprecipitated with p62, and parkin overexpression increased p62 protein levels. In parkin-deficient HeLa cells, transfection with wild-type pakin, but not with ligase activity-deficient pakin mutants, significantly increased p62 levels, suggesting that parkin stabilized p62 through its E3 ligase activity. Transfection with parkin or p62 significantly repressed ERK1/2 phosphorylation in HeLa cells, but transfection with parkin did not repress ERK1/2 phosphorylation in p62-knockdown HeLa cells, suggesting that p62 was involved in parkin-induced inhibition on ERK1/2 phosphorylation. Overexpression of parkin or p62 significantly repressed 6-OHDA-induced ERK1/2 phosphorylation in PC12 cells, and parkin overexpression inhibited 6-OHDA-induced apoptosis in PC12 and SH-SY5Y cells.Conclusion:Parkin protects PC12 cells against 6-OHDA-induced apoptosis via ubiquitinating and stabilizing scaffold protein p62, and repressing ERK1/2 activation.


Cell Death and Disease | 2017

P7C3 inhibits GSK3|[beta]| activation to protect dopaminergic neurons against neurotoxin-induced cell death in vitro and in vivo

Chao Gu; Yan Zhang; Qingsong Hu; Jiayuan Wu; Haigang Ren; Chun-Feng Liu; Guanghui Wang

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. Although its pathogenesis remains unclear, mitochondrial dysfunction plays a vital role in the pathology of PD. P7C3, an aminopropyl carbazole, possesses a significant neuroprotective ability in several neurodegenerative disorders, including PD. Here, we showed that P7C3 stabilized mitochondrial membrane potential, reduced reactive oxygen species production, and inhibited cytochrome c release in MES23.5 cells (a dopaminergic (DA) cell line) exposed to 1-methyl-4-phenylpyridinium (MPP+). In MES23.5 cells, P7C3 inhibited glycogen synthase kinase-3 beta (GSK3β) activation induced by MPP+. P7C3 also inhibited p53 activity and repressed Bax upregulation to protect cells from MPP+ toxicity. In addition, the activation of p53 was significantly attenuated with the inhibition of GSK3β activity by P7C3. Furthermore, P7C3 blocked GSK3β and p53 activation in the midbrain, and prevented DA neuronal loss in the substantia nigra in 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine mice. Thus, our study demonstrates that P7C3 protects DA neurons from neurotoxin-induced cell death by repressing the GSK3β-p53-Bax pathway both in vitro and in vivo, thus providing a theoretical basis for P7C3 in the potential clinical treatment of PD.


PLOS ONE | 2015

The Schizophrenia-Related Protein Dysbindin-1A Is Degraded and Facilitates NF-Kappa B Activity in the Nucleus.

Cheng Fu; Dong Chen; Ruijie Chen; Qingsong Hu; Guanghui Wang

Dystrobrevin-binding protein 1 (DTNBP1), a gene encoding dysbindin-1, has been identified as a susceptibility gene for schizophrenia. Functioning with partners in synapses or the cytoplasm, this gene regulates neurite outgrowth and neurotransmitter release. Loss of dysbindin-1 affects schizophrenia pathology. Dysbindin-1 is also found in the nucleus, however, the characteristics of dysbindin in the nucleus are not fully understood. Here, we found that dysbindin-1A is degraded in the nucleus via the ubiquitin-proteasome system and that amino acids 2-41 at the N-terminus are required for this process. By interacting with p65, dysbindin-1A promotes the transcriptional activity of NF-kappa B in the nucleus and positively regulates MMP-9 expression. Taken together, the data obtained in this study demonstrate that dysbindin-1A protein levels are highly regulated in the nucleus and that dysbindin-1A regulates transcription factor NF-kappa B activity to promote the expression of MMP-9 and TNF-α.


Human Molecular Genetics | 2016

Folliculin, a tumor suppressor associated with Birt-Hogg-Dubé (BHD) syndrome, is a novel modifier of TDP-43 cytoplasmic translocation and aggregation

Qin Xia; Guanghui Wang; Hongfeng Wang; Qingsong Hu; Zheng Ying

TDP-43 was identified as the major component of ubiquitin and autophagosome-positive cytoplasmic inclusions in neurons in the large majority of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD) patients. It has been shown that a loss of nuclear TDP-43 in combination with enhanced cytoplasmic mislocalization of TDP-43, which is associated with accumulation of TDP-43 aggregates in the cytosol, is an early and key event in TDP-43-mediated neurodegeneration. However, the mechanism underlying TDP-43 nucleocytoplasmic shuttling is still not clear. Here, we show that the tumor suppressor folliculin (FLCN) is a novel positive regulator of TDP-43 cytoplasmic translocation. FLCN directly interacts with TDP-43. The amino acids 202-299 of FLCN and RNA-recognition motif domains of TDP-43 are necessary for their interaction. In addition, both exogenous and endogenous FLCNs are required for TDP-43 cytoplasmic accumulation, protein aggregation and stress granule formation. Overall, our study suggests that FLCN may play an important role in the regulation of TDP-43 nucleocytoplasmic shuttling and TDP-43-mediated proteinopathy.

Collaboration


Dive into the Qingsong Hu's collaboration.

Top Co-Authors

Avatar

Hongfeng Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Zheng Ying

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Cheng Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gang Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Zhou

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Gao

Soochow University (Suzhou)

View shared research outputs
Top Co-Authors

Avatar

Ruijie Chen

Wenzhou Medical College

View shared research outputs
Top Co-Authors

Avatar

Ruxiang Xu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Guanghui Wang

Soochow University (Suzhou)

View shared research outputs
Researchain Logo
Decentralizing Knowledge