Qingtao Lu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qingtao Lu.
The Plant Cell | 2006
Lianwei Peng; Jinfang Ma; Wei Chi; Jinkui Guo; Shuyong Zhu; Qingtao Lu; Congming Lu; Lixin Zhang
To gain insight into the processes involved in photosystem II (PSII) biogenesis and maintenance, we characterized the low psii accumulation1 (lpa1) mutant of Arabidopsis thaliana, which generally accumulates lower than wild-type levels of the PSII complex. In vivo protein labeling experiments showed that synthesis of the D1 and D2 proteins was greatly reduced in the lpa1 mutant, while other plastid-encoded proteins were translated at rates similar to the wild type. In addition, turnover rates of the PSII core proteins CP47, CP43, D1, and D2 were higher in lpa1 than in wild-type plants. The newly synthesized PSII proteins were assembled into functional protein complexes, but the assembly was less efficient in the mutant. LPA1 encodes a chloroplast protein that contains two tetratricopeptide repeat domains and is an intrinsic membrane protein but not an integral subunit of PSII. Yeast two-hybrid studies revealed that LPA1 interacts with D1 but not with D2, cytochrome b6, or Alb3. Thus, LPA1 appears to be an integral membrane chaperone that is required for efficient PSII assembly, probably through direct interaction with the PSII reaction center protein D1.
Plant Journal | 2008
Jun Fang; Chenglin Chai; Qian Qian; Chunlai Li; Jiuyou Tang; Lei Sun; Zejun Huang; Xiaoli Guo; Changhui Sun; Min Liu; Yan Zhang; Qingtao Lu; Yiqin Wang; Congming Lu; Bin Han; Fan Chen; Zhukuan Cheng; Chengcai Chu
Pre-harvest sprouting (PHS) or vivipary in cereals is an important agronomic trait that results in significant economic loss. A considerable number of mutations that cause PHS have been identified in several species. However, relatively few viviparous mutants in rice (Oryza sativa L.) have been reported. To explore the mechanism of PHS in rice, we carried out an extensive genetic screening and identified 12 PHS mutants (phs). Based on their phenotypes, these phs mutants were classified into three groups. Here we characterize in detail one of these groups, which contains mutations in genes encoding major enzymes of the carotenoid biosynthesis pathway, including phytoene desaturase (OsPDS), ζ-carotene desaturase (OsZDS), carotenoid isomerase (OsCRTISO) and lycopene β-cyclase (β-OsLCY), which are essential for the biosynthesis of carotenoid precursors of ABA. As expected, the amount of ABA was reduced in all four phs mutants compared with that in the wild type. Chlorophyll fluorescence analysis revealed the occurrence of photoinhibition in the photosystem and decreased capacity for eliminating excess energy by thermal dissipation. The greatly increased activities of reactive oxygen species (ROS) scavenging enzymes, and reduced photosystem (PS) II core proteins CP43, CP47 and D1 in leaves of the Oscrtiso/phs3-1 mutant and OsLCY RNAi transgenic rice indicated that photo-oxidative damage occurred in PS II, consistent with the accumulation of ROS in these plants. These results suggest that the impairment of carotenoid biosynthesis causes photo-oxidation and ABA-deficiency phenotypes, of which the latter is a major factor controlling the PHS trait in rice.
Plant Science | 2002
Congming Lu; Nianwei Qiu; Qingtao Lu; Baoshan Wang; Tingyun Kuang
Abstract The effects of salt stress (0–400 mM NaCl) on PSII photochemistry, photoinhibition and photosynthetic pigment composition were investigated in the halophyte Suaeda salsa grown under outdoor conditions and exposed to full sunlight. Salt stress resulted in a growth stimulation which was optimal at 200 mM NaCl. With increasing salt concentration, leaf water potential and evaporation rate decreased significantly while there were no changes in leaf relative water content. Salt stress also resulted in a significant accumulation of sodium and chloride in leaves. Salt stress induced neither effects on the maximal efficiency of PSII photochemistry measured either at predawn or at midday nor effects on the actual PSII efficiency ( Φ PSII ), the efficiency of excitation energy capture by open PSII reaction centres, photochemical quenching, and non-photochemical quenching (NPQ) at midday. No significant changes were observed in the contents of neoxanthin, lutein, β-carotene, violaxnthin, antheraxthin, zeaxanthin, chlorophyll a and b in salt-stressed plants. Our results suggest that S. salsa showed high resistance not only to salinity stress but also to photoinhibition even when treated with high salinity as high as 400 mM NaCl and exposed to full sunlight. The results indicate that tolerance of PSII to high salinity stress and high light stress can be viewed as an important strategy for S. salsa to grow in very high saline soil.
Plant Molecular Biology | 2009
Shunhua Ding; Qingtao Lu; Yan Zhang; Zhipan Yang; Xiaogang Wen; Lixin Zhang; Congming Lu
To investigate the possible mechanisms of glutathione reductase (GR) in protecting against oxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with 30–70% decreased GR activity by using a gene encoding tobacco chloroplastic GR for the RNAi construct. We investigated the responses of wild type and transgenic plants to oxidative stress induced by application of methyl viologen in vivo. Analyses of CO2 assimilation, maximal efficiency of photosystem II photochemistry, leaf bleaching, and oxidative damage to lipids demonstrated that transgenic plants exhibited enhanced sensitivity to oxidative stress. Under oxidative stress, there was a greater decrease in reduced to oxidized glutathione ratio but a greater increase in reduced glutathione in transgenic plants than in wild type plants. In addition, transgenic plants showed a greater decrease in reduced ascorbate and reduced to oxidized ascorbate ratio than wild type plants. However, there were neither differences in the levels of NADP and NADPH and in the total foliar activities of monodehydroascorbate reductase and dehydroascorbate reductase between wild type and transgenic plant. MV treatment induced an increase in the activities of GR, ascorbate peroxidase, superoxide dismutase, and catalase. Furthermore, accumulation of H2O2 in chloroplasts was observed in transgenic plants but not in wild type plants. Our results suggest that capacity for regeneration of glutathione by GR plays an important role in protecting against oxidative stress by maintaining ascorbate pool and ascorbate redox state.
Plant Physiology | 2006
Yunlai Tang; Xiaogang Wen; Qingtao Lu; Zhipan Yang; Zhukuan Cheng; Congming Lu
Whole spinach (Spinacia oleracea) plants were subjected to heat stress (25°C–50°C) in the dark for 30 min. At temperatures higher than 35°C, CO2 assimilation rate decreased significantly. The maximal efficiency of photosystem II (PSII) photochemistry remained unchanged until 45°C and decreased only slightly at 50°C. Nonphotochemical quenching increased significantly either in the absence or presence of dithiothreitol. There was an appearance of the characteristic band at around 698 nm in 77 K fluorescence emission spectra of leaves. Native green gel of thylakoid membranes isolated immediately from heat-stressed leaves showed that many pigment-protein complexes remained aggregated in the stacking gel. The analyses of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting demonstrated that the aggregates were composed of the main light-harvesting complex of PSII (LHCIIb). To characterize the aggregates, isolated PSII core complexes were incubated at 25°C to 50°C in the dark for 10 min. At temperatures over 35°C, many pigment-protein complexes remained aggregated in the stacking gel of native green gel, and immunoblotting analyses showed that the aggregates were composed of LHCIIb. In addition, isolated LHCII was also incubated at 25°C to 50°C in the dark for 10 min. LHCII remained aggregated in the stacking gel of native green gel at temperatures over 35°C. Massive aggregation of LHCII was clearly observed by using microscope images, which was accompanied by a significant increase in fluorescence quenching. There was a linear relationship between the formation of LHCII aggregates and nonphotochemical quenching in vivo. The results in this study suggest that LHCII aggregates may represent a protective mechanism to dissipate excess excitation energy in heat-stressed plants.
The Plant Cell | 2007
Jinfang Ma; Lianwei Peng; Jinkui Guo; Qingtao Lu; Congming Lu; Lixin Zhang
Biogenesis and assembly of photosystem II is mainly regulated by nuclear-encoded factors. This work reports the identification of a nuclear-encoded factor LPA2 that is involved in efficient photosystem II assembly, probably through direct interaction with photosystem II core protein CP43. To elucidate the molecular mechanism of photosystem II (PSII) assembly, we characterized the low psii accumulation2 (lpa2) mutant of Arabidopsis thaliana, which is defective in the accumulation of PSII supercomplexes. The levels and processing patterns of the RNAs encoding the PSII subunits are unaltered in the mutant. In vivo protein-labeling experiments showed that the synthesis of CP43 (for chlorophyll a binding protein) was greatly reduced, but CP47, D1, and D2 were synthesized at normal rates in the lpa2-1 mutant. The newly synthesized CP43 was rapidly degraded in lpa2-1, and the turnover rates of D1 and D2 were higher in lpa2-1 than in wild-type plants. The newly synthesized PSII proteins were assembled into PSII complexes, but the assembly of PSII was less efficient in the mutant than in wild-type plants. LPA2 encodes an intrinsic thylakoid membrane protein, which is not an integral subunit of PSII. Yeast two-hybrid assays indicated that LPA2 interacts with the PSII core protein CP43 but not with the PSII reaction center proteins D1 and D2. Moreover, direct interactions of LPA2 with Albino3 (Alb3), which is involved in thylakoid membrane biogenesis and cell division, were also detected. Thus, the results suggest that LPA2, which appears to form a complex with Alb3, is involved in assisting CP43 assembly within PSII.
Plant Molecular Biology | 2006
Hua Chen; Dongyuan Zhang; Jinkui Guo; Hao Wu; Meifang Jin; Qingtao Lu; Congming Lu; Lixin Zhang
Psb27 has been identified as a lumenal protein associated with photosystem II (PSII). To gain insight into the function of Psb27, we isolated a mutant Arabidopsis plant with a loss of psb27 function. The quantity of PSII complexes and electron transfer within PSII remained largely unaffected in the psb27 mutant. Our results also showed that under high-light-illumination, PSII activity and the content of the PSII reaction center protein D1 decreased more significantly in the psb27 mutant than in wild-type (WT) plant. Treatment of leaves with a chloroplast protein synthesis inhibitor resulted in similar light-induced PSII inactivation levels and D1 protein degradation rates in the WT and psb27 mutant plants. Recovery of PSII activity after photoinhibition was delayed in the psb27 mutant, suggesting that Psb27 is required for efficient recovery of the photodamaged PSII complex. Overall, these results demonstrated that Psb27 in Arabidopsis is not essential for oxygenic photosynthesis and PSII formation. Instead, our results provide evidence for the involvement of this lumenal protein in the recovery process of PSII.
The Plant Cell | 2013
Linlin Zhong; Wen Zhou; Haijun Wang; Shunhua Ding; Qingtao Lu; Xiaogang Wen; Lianwei Peng; Lixin Zhang; Congming Lu
The molecular mechanisms by which sHSPs are involved in cell protection remain unknown. This study reports that chloroplast HSP21 is essential for chloroplast development by maintaining plastid-encoded RNA polymerase function under heat stress. Compared with small heat shock proteins (sHSPs) in other organisms, those in plants are the most abundant and diverse. However, the molecular mechanisms by which sHSPs are involved in cell protection remain unknown. Here, we characterized the role of HSP21, a plastid nucleoid-localized sHSP, in chloroplast development under heat stress. We show that an Arabidopsis thaliana knockout mutant of HSP21 had an ivory phenotype under heat stress. Quantitative real-time RT-PCR, run-on transcription, RNA gel blot, and polysome association analyses demonstrated that HSP21 is involved in plastid-encoded RNA polymerase (PEP)–dependent transcription. We found that the plastid nucleoid protein pTAC5 was an HSP21 target. pTAC5 has a C4-type zinc finger similar to that of Escherichia coli DnaJ and zinc-dependent disulfide isomerase activity. Reduction of pTAC5 expression by RNA interference led to similar phenotypic effects as observed in hsp21. HSP21 and pTAC5 formed a complex that was associated mainly with the PEP complex. HSP21 and pTAC5 were associated with the PEP complex not only during transcription initiation, but also during elongation and termination. Our results suggest that HSP21 and pTAC5 are required for chloroplast development under heat stress by maintaining PEP function.
Cell Research | 2007
Haili Dong; Yan Deng; Jinye Mu; Qingtao Lu; Yiqin Wang; Yunyuan Xu; Chengcai Chu; Kang Chong; Congming Lu; Jianru Zuo
Carotenoids, a class of natural pigments found in all photosynthetic organisms, are involved in a variety of physiological processes, including coloration, photoprotection, biosynthesis of abscisic acid (ABA) and chloroplast biogenesis. Although carotenoid biosynthesis has been well studied biochemically, the genetic basis of the pathway is not well understood. Here, we report the characterization of two allelic Arabidopsis mutants, spontaneous cell death1-1 (spc1-1) and spc1-2. The weak allele spc1-1 mutant showed characteristics of bleached leaves, accumulation of superoxide and mosaic cell death. The strong mutant allele spc1-2 caused a complete arrest of plant growth and development shortly after germination, leading to a seedling-lethal phenotype. Genetic and molecular analyses indicated that SPC1 encodes a putative ζ-carotene desaturase (ZDS) in the carotenoid biosynthesis pathway. Analysis of carotenoids revealed that several major carotenoid compounds downstream of SPC1/ZDS were substantially reduced in spc1-1, suggesting that SPC1 is a functional ZDS. Consistent with the downregulated expression of CAO and PORB, the chlorophyll content was decreased in spc1-1 plants. In addition, expression of Lhcb1.1, Lhcb1.4 and RbcS was absent in spc1-2, suggesting the possible involvement of carotenoids in the plastid-to-nucleus retrograde signaling. The spc1-1 mutant also displays an ABA-deficient phenotype that can be partially rescued by the externally supplied phytohormone. These results suggest that SPC1/ZDS is essential for biosynthesis of carotenoids and plays a crucial role in plant growth and development.
Journal of Plant Physiology | 2011
Wei Li; Chunyan Zhang; Qingtao Lu; Xiaogang Wen; Congming Lu
Under natural conditions or in the field, plants are often subjected to a combination of different stresses such as salt stress and heat shock. Although salt stress and heat shock have been extensively studied, little is known about how their combination affects plants. We used proteomics, coupled with physiological measurements, to investigate the effect of salt stress, heat shock, and their combination on Suaeda salsa plants. A combination of salt stress and heat shock resulted in suppression of CO(2) assimilation and the photosystem II efficiency. Approximately 440 protein spots changed their expression levels upon salt stress, heat shock and their combination, and 57 proteins were identified by MS. These proteins were classified into several categories including disease/defense, photosynthesis, energy production, material transport, and signal transduction. Some proteins induced during salt stress, e.g. choline monooxygenase, chloroplastic ATP synthase subunit beta, and V-type proton ATPase catalytic subunit A, and some proteins induced during heat shock, e.g. heat shock 70kDa protein, probable ion channel DMI1, and two component sensor histidine kinase, were either unchanged or suppressed during a combination of salt stress and heat shock. In contrast, the expression of some proteins, including nucleoside diphosphate kinase 1, chlorophyll a/b binding protein, and ABC transporter I family member 1, was specifically induced during a combination of salt stress and heat shock. The potential roles of the stress-responsive proteins are discussed.