Qingwei Chen
Chongqing Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qingwei Chen.
Peptides | 2012
Li Wang; Qingwei Chen; Guiqiong Li; Dazhi Ke
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), is thought to exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function such as cell proliferation, migration, survival and angiogenesis. However, the effect of ghrelin on angiogenesis and the corresponding mechanisms have not yet been extensively studied in cardiac microvascular endothelial cells (CMECs) isolated from left ventricular myocardium of adult Sprague-Dawley (SD) rats. In our study, we found that ghrelin and GHSR are constitutively expressed in CMECs. Ghrelin significantly increases CMECs proliferation, migration, and in vitro angiogenesis. The ghrelin-induced angiogenic process was accompanied by phosphorylation of ERK and Akt. MEK inhibitor PD98059 abolished ghrelin-induced phosphorylation of ERK, but had no effect on Akt phosphorylation. PI3K inhibitor LY294002 abolished ghrelin-induced phosphorylation of Akt, but had no effect on ERK phosphorylation. Ghrelin-induced angiogenesis was partially blocked by treatment with PD98059 or LY294002. In addition, this angiogenic effect was almost completely inhibited by PD98059+LY294002. Pretreatment with GHSR1a blocker [D-Lys3]-GHRP-6 abolished ghrelin-induced phosphorylation of ERK, Akt and in vitro angiogenesis. In conclusion, this is the first demonstration that ghrelin stimulates CMECs angiogenesis through GHSR1a-mediated MEK/ERK and PI3K/Akt signal pathways, indicating that two pathways are required for full angiogenic activity of ghrelin. This study suggests that ghrelin may play an important role in myocardial angiogenesis.
Microvascular Research | 2011
Xian-Gang Mo; Qingwei Chen; Xing-Sheng Li; Minming Zheng; Dazhi Ke; Wei Deng; Guiqiong Li; Jin Jiang; Zhiqin Wu; Li Wang; Peng Wang; Yan Yang; Guang-Yi Cao
Hypoxia-inducible factor-1 (HIF-1) orchestrates angiogenesis under hypoxic conditions mainly due to increased expression of such target genes as vascular endothelial growth factor (VEGF). Na+/H+exchanger-1 (NHE1), a potential HIF target gene product, plays a pivotal role in proliferation, survival, migration, adhesion and so on. However, it is unknown whether NHE1 is involved in HIF-1α-induced angiogenesis. This present study demonstrated that the expression of NHE1 was much higher in human umbilical vein endothelial cells (HUVECs) infected with adenovirus encoding HIF-1α (rAd-HIF) than with vacuum adenovirus (vAd). HIF-1α also increased the expression of VEGF, the expression and activity of calpains, and the intracellular pH. Moreover, small interfering RNA targeting NHE1 (NHE1 siRNA) dramatically decreased the expression of NHE1 and thus lowered the intracellular pH, and it also attenuated the protein expression of calpain-2 but not calpain-1, resulting in the lower calpain activity. Furthermore, HIF-1α enhanced the proliferation, migration and Matrigel tube formation, which were inhibited by NHE1 siRNA. Finally, the inhibitory effect of NHE1 siRNA was reversed by VEGF and the reversibility of the later was abrogated by the calpain inhibitor ALLM. In conclusion, the findings have revealed that NHE1 might participate in HIF-1-induced angiogenesis due, at least in part, to the alteration of the calpain activity, suggesting that NHE1 as well as calpains might represent a potential target of controlling angiogenesis in response to the hypoxic stress under various pathological conditions.
Metabolism-clinical and Experimental | 2013
Xiaodong Chen; Qingwei Chen; Li Wang; Guiqiong Li
OBJECTIVE The purpose of this research was to investigate the effects of ghrelin on circulating endothelial progenitor cells (EPC) directional migration and its underlying molecular mechanisms involved in this process. MATERIALS/METHODS EPC were isolated from bone marrow of SD rats by using Percoll density gradient centrifugation, and characterized by double positive for acLDL-Dil uptake and FITC-UEA-1 binding and immunocytochemistry for CD34, CD133, vWF and Flk-1. EPC were treated with different concentrations of ghrelin (10(-9)~10(-6)M) with or without GHSR1a inhibitor [D-Lys3]-GHRP-6, PI3K inhibitor LY294002 and endothelial nitric oxide synthase (eNOS) inhibitor L-NAME, migration of EPC was detected by transwell assay, levels of phosphorylated and total Akt and eNOS were determined by Western-blot analysis and Nitric Oxide (NO) production was measured by Griess assay, respectively. RESULTS EPC were successfully obtained by Percoll density gradient centrifugation and ghrelin at 10(-8)M~10(-7)M promoted EPC migration. Ghrelin-induced EPC migration was accompanied by phosphorylation of Akt and eNOS, as well as an increase in NO production. These biochemical events and EPC directional migration induced by ghrelin were completely inhibited by GHSR-1a blocker [D-Lys3]-GHRP-6. PI3K inhibitor LY294002 attenuated ghrelin-induced EPC migration, phosphorylation of Akt and eNOS, and NO production. eNOS inhibitor L-NAME blocked ghrelin-induced EPC migration, phosphorylation of eNOS, and NO production, but had no effect on Akt phosphorylation. CONCLUSIONS These findings suggest that ghrelin stimulates EPC directional migration via GHSR1a-mediated PI3K/Akt/eNOS/NO signal pathway. It indicates that ghrelin may be used as a therapeutic strategy to treat ischemic diseases by promoting EPC directional migration.
Tumor Biology | 2012
Guiqiong Li; Qingwei Chen; Li Wang; Dazhi Ke; Zhongming Yuan
A recent genome-wide association study showed that the rs9939609 polymorphism in the fat mass and obesity-associated (FTO) gene was associated with body mass index (BMI)/obesity in Europeans. Subsequently, several studies have investigated the association between FTO polymorphism and cancer risk. However, the results have been inconsistent. In this study, a meta-analysis was performed to clarify the association between FTO polymorphism and cancer risk. Published literature from PubMed and Embase databases were retrieved. Pooled odds ratio (OR) with 95 % confidence interval (CI) was calculated using fixed-effects model. A total of 13 studies involving 16,277 cases and 31,153 controls were identified. The results suggested that FTO rs9939609 polymorphism was not significantly associated with the increased risk of cancer (OR = 1.01, 95 %CI 0.98–1.04), with the exception that a statistically significant association was found for pancreatic cancer (OR = 1.10, 95 %CI 1.03–1.19). No publication bias was detected (Begg’s test: P = 0.760; Egger’s test: P = 0.553). Our meta-analysis indicated that there was no association between FTO rs9939609 polymorphism and the increased risk of cancer, although this polymorphism was marginally associated with pancreatic cancer. However, the conclusion should be made with caution since most included studies did not take BMI/obesity into account.
Molecules | 2014
Zhiqin Wu; Qingwei Chen; Dazhi Ke; Guiqiong Li; Wei Deng
Diabetes mellitus (DM) has been recognized as a major health problem. Emodin (Emo) has been reported to exhibit protective effects against diabetic nephropathy. However, little has been known about the effect of Emo on diabetic cardiomyopathy (DCM). A type 2 DM model was induced in rats by low dose streptozotocin (STZ) combined with high energy intake. We found that Emo-treated groups displayed significantly higher body weight (BW) and lower heart weight (HW)/BW. Furthermore, Emo could significantly decrease blood glucose, total cholesterol (TG) levels, and triglyceride (TC) levels in diabetic rats. Moreover, the Emo-treated group showed a marked increase in heart rate (HR) and showed lower left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), left ventricular posterior wall thickness (LWPWT), and interventricular septal diastolic wall thickness (IVSD). Emo induced a significant increase in phosphorylation of Akt and GSK-3β in myocardium. These results suggest that Emo may have great therapeutic potential in the treatment of DCM by Akt/GSK-3β signaling pathway.
Peptides | 2015
Li Wang; Qingwei Chen; Guiqiong Li; Dazhi Ke
OBJECTIVES Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), has been found to stimulate angiogenesis in vivo and in vitro. However, the effect and the corresponding mechanisms of ghrelin on impaired myocardial angiogenesis in diabetic and myocardial infarction (MI) rat model are still unknown. METHODS In the present study, adult SD rats were randomly divided into 4 groups: control, DM, DM+ghrelin, DM+ghrelin+[D-Lys3]-GHRP-6 groups. DM was induced by streptozotocin (STZ) 60 mg/kg body weight. 12 weeks post STZ injection all groups were subjected to MI, which was induced by ligation left anterior descending artery (LAD). Ghrelin and [D-Lys3]-GHRP-6 were administered via intraperitoneal injection at the doses 200 μg/kg and 50mg/kg for 4 weeks, respectively. Left ventricular function, microvascular density (MVD), myocardial infarct size, the expression of hypoxia-inducible factor (HIF1α), vascular endothelial growth factor (VEGF), fetal liver kinase-1 (Flk-1) and fms-like tyrosine kinase-1 (Flt-1), AMPK and endothelial nitric oxide synthase (eNOS) phosphorylation were examined. RESULTS Compared with the DM group, left ventricular ejection fraction (LVEF), fractional shortening (FS), and MVD were increased, whereas myocardial infarct size decreased remarkably in DM+ghrelin group. For the mechanism study, we found that ghrelin promoted the HIF1α, VEGF, Flk-1 and Flt-1 expression, AMPK and eNOS phosphorylation in diabetic rats. However, the above biochemical events in ghrelin treated diabetic rats were completely inhibited by GHSR-1a blocker [D-Lys3]-GHRP-6. CONCLUSIONS These results suggest that administration of ghrelin ameliorates impaired angiogenesis in diabetic MI rats. And these beneficial effects derive from regulating GHSR1a-mediated AMPK/eNOS signal pathway by upregulating of HIF1α, VEGF and its receptors Flk-1, Flt-1 expressions.
Metabolism-clinical and Experimental | 2015
Li Wang; Guiqiong Li; Qingwei Chen; Dazhi Ke
OBJECTIVE Low concentrations of oxidized low-density lipoprotein (oxLDL) promote the in vitro angiogenesis of endothelial cells and play an important role in plaque angiogenesis, which may cause plaque vulnerability and enhance the risk of intravascular thrombosis. The aim of this research was to investigate the effects of octanoylated ghrelin on oxLDL-induced angiogenesis and the underlying molecular mechanisms involved in this process. MATERIALS/METHODS Human coronary artery endothelial cells (HCAECs) were incubated with 5 μg/ml oxLDL and treated with various concentrations of octanoylated ghrelin (10(-9)-10(-6)M) with or without inhibitors for 24h. Cell proliferation, migration, and in vitro angiogenesis were analyzed by bromodeoxyuridine (BrdU) staining and BrdU enzyme-linked immunosorbent assay (ELISA), transwell assay, and tube formation on Matrigel, respectively. NF-κB (nuclear factor κB) expression was determined by Western-blot analysis. RESULTS Treatment with oxLDL at 5 μg/ml enhanced the proliferation, migration and tube formation of HCAECs. In contrast, pretreatment with octanoylated ghrelin significantly attenuated in vitro angiogenesis in oxLDL-induced HCAECs. In addition, Western blot analysis indicated that NF-κB expression was increased after oxLDL treatment, and that this effect was significantly reversed by pretreatment with octanoylated ghrelin. However, the NF-κB inhibitor PDTC or the GHSR1a inhibitor [D-Lys3]-GHRP-6 abolished the effects of octanoylated ghrelin on the inhibition of angiogenesis and NF-κB p65 expression induced by oxLDL. CONCLUSIONS These findings suggest that octanoylated ghrelin attenuates angiogenesis induced by oxLDL in HCAECs via the inhibition of GHSR1a-mediated NF-κB pathway. Furthermore, octanoylated ghrelin may promote the stability of vulnerable plaques by inhibiting plaque angiogenesis.
Cytotherapy | 2011
Wei Deng; Qingwei Chen; Xing-Sheng Li; Hao Liu; Si-Qiang Niu; Yue Zhou; Guiqiong Li; Dazhi Ke; Xian-Gang Mo
BACKGROUND AIMS This study was initiated to investigate the efficacy of myocardial fibrosis intervention via signal transducer and activators of transcription (STAT) signaling using bone marrow (BM) mesenchymal stromal cells (MSC) with the aid of bispecific antibody (BiAb) and ultrasound-mediated microbubbles (MB). METHODS BiAb (anti-CD29 × anti-myosin light chain antibody; AMLCA) was prepared and combined with isolated MSC from male mice and transfused into female mice with isoproterenol-induced myocardial fibrosis via the tail vein, followed by MB (MSC + BiAb + MB). This study included seven groups: MSC + BiAb + MB; MSC; BiAb; MB; MSC + BiAb; untreated; and control. Five weeks after treatment, expression levels of the sex-determining region of Y-chromosome (SRY), matrix metalloproteinases (MMP)-9, tissue inhibitor of metalloproteinase (TIMP)-1 and vascular endothelial growth factor (VEGF) in myocardium were detected by fluorescent quantitative real-time polymerase chain reaction (qRT-PCR). Collagen distribution was observed using Sirius Red staining. The protein expression of signal transducer and activators of transcription (STAT)1 and STAT3 was detected by Western blot. RESULTS The highest homing number of MSC was in the MSC + BiAb + MB group, second highest in the MSC + BiAb group, and lowest in MSC alone. Compared with the untreated group, MSC + BiAb + MB, MSC + BiAb and MSC groups had decreased levels of MMP-9, TIMP-1, STAT1 and collagen deposition, and increased levels of STAT3. Upregulated STAT3 and downregulated TIMP-1 were significantly different in MSC + BiAb + MB compared with MSC alone or MSC + BiAb. CONCLUSIONS The homing rate and repairing efficacy of MSC improved with treatment utilizing a combination of BiAb and MB. MSC can improve MMP-TIMP expression in injured myocardium and interfere with myocardial fibrosis after homing, a mechanism that may be related to the STAT-mediated signaling pathway.
The American Journal of the Medical Sciences | 2011
Wei Deng; Qingwei Chen; Guiqiong Li; Xing-Sheng Li; Dazhi Ke; Xian-Gang Mo; Li Wang; Peng Wang; Zhiqin Wu
Introduction:Many patients with coronary heart disease (CHD) also have metabolic syndrome (MS); however, little is known about the condition of cardiovascular remodeling in these patients. The objective of this study to explore the role of plasma procollagen III N-terminal peptide (PIIINP) in predicting the prognosis and cardiac remodeling in patients with CHD with MS. Methods:One hundred eight patients were classified into high and low PIIINP groups according to the median value of plasma PIIINP. Cardiovascular examinations including echocardiogram, carotid color ultrasound examination, coronary angiography and the 6-minute walking test (6MWT) were performed before and after a 1-year follow-up. Readmission for cardiac and cerebrovascular events was assessed during the follow-up period. Results:Plasma PIIINP level was significantly correlated with age, high-sensitivity C-reactive protein (hs-CRP) and body mass index in a multiple stepwise regression model. There was a positive correlation between the LnPIIINP and an increased left ventricular mass index in partial correlation analysis. The Cox proportional hazard model analysis indicated that the level of PIIINP, left ventricular ejection fraction and hs-CRP were independent predictors of readmission owing to cardiac and cerebrovascular events during the follow-up. A PIIINP value of 4.0 &mgr;g/L was the best threshold value for determining the need for readmission. Conclusions:PIIINP levels rise with increases in age, hs-CRP and body mass index in patients with CHD with MS, and a high level of PIIINP indicates recent deterioration of cardiac remodeling and exercise tolerance and a poor prognosis.
PLOS ONE | 2014
Liwen Ye; Minming Zheng; Qingwei Chen; Guiqion Li; Wei Deng; Dazhi Ke
Background Several randomized controlled trials (RCTs) have evaluated the effect of intra-aortic balloon counterpulsation pump(IABP) on the mortality of acute myocardial infarction (AMI). Objectives To analyze the relevant RCT data on the effect of IABP on mortality and the occurrence of bleeding in AMI. Data Sources Published RCTs on the treatment of AMI by IABP were retrieved in searches of Medline, EMBASE, Cochrane and other related databases. The last search was conducted on July 20, 2014. Study Eligibility Criteria Randomized clinical trials comparing IABP to controls as treatment for AMI. Participants Patients with AMI. Synthesis Methods The primary endpoint was mortality, and the secondary endpoint was bleeding events. To account for to heterogeneity, a random-effects model was used to analyze the study data. Results Ten trials with a total population of 973 patients that were included in the analysis showed no significant difference in 2-month mortality between the IABP and the control groups. The 6-month mortality in the IABP group was not significantly lower than in the control group in the four RCTs that enrolled 59 AMI patients with CS. But in the four that enrolled AMI 66 patients without CS, the data showed opposite conclusion. Conclusions IABP cannot reduce within 2 months and 6–12 months mortality of AMI patients with CS as well as within 2 months mortality of AMI patients without CS, but can reduce 6–12 months mortality of AMI patients without CS. In addition, IABP can increase the risk of bleeding.