Qingxin Ma
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qingxin Ma.
Scientific Reports | 2015
Hong He; Yuesi Wang; Qingxin Ma; Jinzhu Ma; Biwu Chu; Dongsheng Ji; Guiqian Tang; Chang Liu; Hongxing Zhang; Jiming Hao
Haze in China has been increasing in frequency of occurrence as well as the area of the affected region. Here, we report on a new mechanism of haze formation, in which coexistence with NOx can reduce the environmental capacity for SO2, leading to rapid conversion of SO2 to sulfate because NO2 and SO2 have a synergistic effect when they react on the surface of mineral dust. Monitoring data from five severe haze episodes in January of 2013 in the Beijing-Tianjin-Hebei regions agreed very well with the laboratory simulation. The combined air pollution of motor vehicle exhaust and coal-fired flue gases greatly reduced the atmospheric environmental capacity for SO2, and the formation of sulfate was found to be a main reason for the growth of fine particles, which led to the occurrence of haze. These results indicate that the impact of motor vehicle exhaust on the atmospheric environment might be underestimated.
Journal of Physical Chemistry A | 2008
Qingxin Ma; Yongchun Liu; Hong He
Field measurements showed that there exists a correlation between nitrate and sulfate on mineral dust. In this work, the synergistic mechanism of adsorption and reaction between SO2 and NO2 on gamma-alumina was studied using in situ diffusion reflectance infrared Fourier spectroscopy (in situ DRIFTS) and temperature programmed desorption (TPD). The results revealed that the reaction pathway of NO2 adsorbed on alumina was altered in the presence of SO2. In the absence of SO2, nitrite was found to be an intermediate in the oxidation of NO2 to surface nitrate species. However, in the presence of SO2, the formation of nitrite was inhibited and a new intermediate, dinitrogen tetraoxide (N2O4), was observed. On the other hand, surface tetravalent sulfur species S(IV), including bisulfite and sulfite, were oxidized to sulfate in air condition when NO2 was present. The atmospheric implication of this synergistic effect was also discussed.
Journal of Environmental Sciences-china | 2010
Qingxin Ma; Hong He; Yongchun Liu
In situ diffusion reflectance infrared Fourier transform spectroscopy was used to study the water adsorption on mineral oxides (SiO2, alpha-Al2O3, MgO, Fe2O3, TiO2). The results showed that all the water adsorption isotherms were well fitted with the Brunauer-Emmett-Teller (BET)-III type equation, with the calculated monolayers occurring at 24%-30% relative humidity. It showed that about 1-5 layers of water adsorbed on oxides surfaces in ambient relative humidity (20%-90%). The measured deliquescence relative humidity of NaCl was (74 +/- 1)%, which demonstrated that DRIFTS is a useful method for the study the hygroscopic behavior of mineral dust. In addition, the limits of DRIFTS were also discussed.
Environmental Science & Technology | 2013
Qingxin Ma; Jinzhu Ma; Chang Liu; Chengyue Lai; Hong He
Atmospheric aerosol is usually found to be a mixture of various inorganic and organic components in field measurements, whereas the effect of this mixing state on the hygroscopicity of aerosol particles has remained unknown. In this study, the hygroscopic behavior of mixtures of C2-C4 dicarboxylic acids and NaCl was investigated. For both externally and internally mixed malonic acid-NaCl and succinic acid-NaCl particles, correlation between water content and chemical composition was observed and the water content of these mixtures at relative humidity (RH) above 80% can be well predicted by the Zdanovskii-Stokes-Robinson (ZSR) method. In contrast, a nonlinear relation between the total water content of the mixtures and the water content of each chemical composition separately was found for oxalic acid-NaCl mixtures. Compared to the values predicted by the ZSR method, the dissolution of oxalic acid in external mixtures resulted in an increase in the total water content, whereas the formation of less hygroscopic disodium oxalate in internal mixtures led to a significant decrease in the total water content. Furthermore, we found that the hygroscopicity of the sodium dicarboxylate plays a critical role in determining the aqueous chemistry of dicarboxylic acid-NaCl mixtures during the humidifying and dehumidifying process. It was also found that the hydration of oxalic acid and the deliquescence of NaCl did not change in external oxalic acid-NaCl mixtures. The deliquescence relative humidity (DRHs) for both malonic acid and NaCl decreased in both external and internal mixtures. These results could help in understanding the conversion processes of dicarboxylic acids to dicarboxylate salts, as well as the substitution of Cl by oxalate in the atmosphere. It was demonstrated that the effect of coexisting components on the hygroscopic behavior of mixed aerosols should not be neglected.
Journal of Physical Chemistry A | 2008
Yongchun Liu; Hong He; Qingxin Ma
The experimental determination of rate constants for atmospheric reactions and how these rate constants vary with temperature remain a crucially important part of atmosphere science. In this study, the temperature dependence of the heterogeneous reaction of carbonyl sulfide (COS) on magnesium oxide (MgO) has been investigated using a Knudsen cell reactor and a temperature-programmed reaction apparatus. We found that the adsorption and the heterogeneous reaction are sensitive to temperature. The initial uptake coefficients (gammat(Ini)) of COS on MgO decrease from 1.07 +/- 0.71 x 10-6 to 4.84 +/- 0.60 x 10-7 with the increasing of temperature from 228 to 300 K, and the steady state uptake coefficients (gammat(SS)) increase from 5.31 +/- 0.06 x 10-8 to 1.68 +/- 0.41 x 10-7 with the increasing of temperature from 240 to 300 K. The desorption rate constants (kdes) were also found to increase slightly with the enhancement of temperature. The empirical formula between the uptake coefficients, desorption rate constants and temperature described in the form of Arrhenius expression were obtained. The activation energies for the heterogeneous reaction and desorption of COS on MgO were measured to be 11.02 +/- 0.34 kJ.mol-1 and 6.30 +/- 0.81 kJ.mol-1, respectively. The results demonstrate that the initial uptake of COS on MgO is mainly contributed by an adsorption process and the steady state uptake is due to a catalytic reaction. The environmental implication was also discussed.
Journal of Physical Chemistry A | 2010
Qingxin Ma; Yongchun Liu; Hong He
The hygroscopic behavior of atmospheric aerosols has a significant effect on the global climate change. In this study, a physisorption analyzer was used to measure the water adsorption capacity of Al(2)O(3), NaCl, NH(4)NO(3), and (NH(4))(2)SO(4) particles at 273.6 K. Qualitative and quantitative information about water adsorption on these particles was obtained with changing the temperature and/or relative humidity (RH). Uptake of water on Al(2)O(3) showed a type-II BET adsorption isotherm with the monolayer formed at approximately 18% relative humidity (RH). The hygroscopic properties of NaCl, (NH(4))(2)SO(4), and NH(4)NO(3), including the deliquescence relative humidities (DRH), the temperature dependence of the DRH for NH(4)NO(3), and the growth factors of NaCl and (NH(4))(2)SO(4) were determined. All these results were in good agreement with the results obtained by other methods and/or theoretical prediction with a deviation less than 2%. For NaCl, the water adsorption amount increase rate exhibits three stages (<30% RH, approximately 30%-65% RH, and >65% RH) in the predeliquescence process and monolayer thin film water was formed at about 30% RH. It demonstrated that this instrument was practicable for studying the hygroscopic behavior of both soluble and insoluble but wettable atmospheric nonviolate aerosol particles.
Journal of Environmental Sciences-china | 2012
Qingxin Ma; Yongchun Liu; Chang Liu; Jinzhu Ma; Hong He
Mineral dust comprises a great fraction of the global aerosol loading, but remains the largest uncertainty in predictions of the future climate due to its complexity in composition and physico-chemical properties. In this work, a case study characterizing Asian dust storm particles was conducted by multiple analysis methods, including SEM-EDS, XPS, FT-IR, BET, TPD/mass and Knudsen cell/mass. The morphology, elemental fraction, source distribution, true uptake coefficient for SO2, and hygroscopic behavior were studied. The major components of Asian dust storm particles are aluminosilicate, SiO2 and CaCO3, with organic compounds and inorganic nitrate coated on the surface. It has a low reactivity towards SO2 with a true uptake coefficient, 5.767 x 10(-6), which limits the conversion of SO2 to sulfate during dust storm periods. The low reactivity also means that the heterogeneous reactions of SO2 in both dry and humid air conditions have little effect on the hygroscopic behavior of the dust particles.
Environmental Science & Technology | 2012
Yongchun Liu; Qingxin Ma; Hong He
Heterogeneous uptake of methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) onto citric acid and humic acid was investigated using a Knudsen cell reactor coupled to a quadrupole mass spectrometer at 298 K. Acid-base reactions between amines and carboxylic acids were confirmed. The observed uptake coefficients of MA, DMA, and TMA on citric acid at 298 K were measured to be 7.31 ± 1.13 × 10(-3), 6.65 ± 0.49 × 10(-3), and 5.82 ± 0.68 × 10(-3), respectively, and showed independence of sample mass. The observed uptake coefficients of MA, DMA, and TMA on humic acid at 298 K increased linearly with sample mass, and the true uptake coefficients of MA, DMA, and TMA were measured to be 1.26 ± 0.07 × 10(-5), 7.33 ± 0.40 × 10(-6), and 4.75 ± 0.15 × 10(-6), respectively. Citric acid, having stronger acidity, showed a higher reactivity than humic acid for a given amine; while the steric effect of amines was found to govern the reactivity between amines and citric acid or humic acid.
Journal of Environmental Sciences-china | 2013
Jinzhu Ma; Yongchun Liu; Chong Han; Qingxin Ma; Chang Liu; Hong He
As an important precursor of hydroxyl radical, nitrous acid (HONO) plays a key role in the chemistry of the lower atmosphere. Recent atmospheric measurements and model calculations show strong enhancement for HONO formation during daytime, while they are inconsistent with the known sources in the atmosphere, suggesting that current models are lacking important sources for HONO. In this article, heterogeneous photochemical reactions of nitric acid/nitrate anion and nitrogen oxide on various aerosols were reviewed and their potential contribution to HONO formation was also discussed. It is demonstrated that HONO can be formed by photochemical reaction on surfaces with deposited HNO3, by photocatalytic reaction of NO2 on TiO2 or TiO2-containing materials, and by photochemical reaction of NO2 on soot, humic acids or other photosensitized organic surfaces. Although significant uncertainties still exist in the exact mechanisms and the yield of HONO, these additional sources might explain daytime observations in the atmosphere.
Environmental Science & Technology | 2017
Qingxin Ma; Tao Wang; Chang Liu; Hong He; Zhe Wang; Weihao Wang; Yutong Liang
Nitrous acid (HONO) is an important source of hydroxyl radical (OH) that determines the fate of many chemically active and climate relevant trace gases. However, the sources and the formation mechanisms of HONO remain poorly understood. In this study, the effect of SO2 on the heterogeneous reactions of NO2 on MgO as a mineral dust surrogate was investigated. The reactivity of MgO to NO2 is weak, while coexisting SO2 can increase the uptake coefficients of NO2 on MgO by 2-3 orders of magnitude. The uptake coefficients of NO2 on SO2-aged MgO are independent of NO2 concentrations in the range of 20-160 ppbv and relative humidity (0-70%RH). The reaction mechanism was demonstrated to be a redox reaction between NO2 and surface sulfite. In the presence of SO2, NO2 was reduced to nitrite under dry conditions, which could be further converted to gas-phase HONO in humid conditions. These results suggest that the reductive effect of SO2 on the heterogeneous conversion of NO2 to HONO may have a significant contribution to the unknown sources of HONO observed in polluted areas (for example, in China).