Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qingzhi Wu is active.

Publication


Featured researches published by Qingzhi Wu.


Nature Materials | 2012

Thermal conductivity of isotopically modified graphene

Shanshan Chen; Qingzhi Wu; Columbia Mishra; Junyong Kang; Hengji Zhang; Kyeongjae Cho; Weiwei Cai; Alexander A. Balandin; Rodney S. Ruoff

In addition to its exotic electronic properties graphene exhibits unusually high intrinsic thermal conductivity. The physics of phonons - the main heat carriers in graphene - was shown to be substantially different in two-dimensional (2D) crystals, such as graphene, than in three-dimensional (3D) graphite. Here, we report our experimental study of the isotope effects on the thermal properties of graphene. Isotopically modified graphene containing various percentages of 13C were synthesized by chemical vapor deposition (CVD). The regions of different isotopic composition were parts of the same graphene sheet to ensure uniformity in material parameters. The thermal conductivity, K, of isotopically pure 12C (0.01% 13C) graphene determined by the optothermal Raman technique, was higher than 4000 W/mK at the measured temperature Tm~320 K, and more than a factor of two higher than the value of K in a graphene sheets composed of a 50%-50% mixture of 12C and 13C. The experimental data agree well with our molecular dynamics (MD) simulations, corrected for the long-wavelength phonon contributions via the Klemens model. The experimental results are expected to stimulate further studies aimed at better understanding of thermal phenomena in 2D crystals.In addition to its exotic electronic properties graphene exhibits unusually high intrinsic thermal conductivity. The physics of phonons--the main heat carriers in graphene--has been shown to be substantially different in two-dimensional (2D) crystals, such as graphene, from in three-dimensional (3D) graphite. Here, we report our experimental study of the isotope effects on the thermal properties of graphene. Isotopically modified graphene containing various percentages of 13C were synthesized by chemical vapour deposition (CVD). The regions of different isotopic compositions were parts of the same graphene sheet to ensure uniformity in material parameters. The thermal conductivity, K, of isotopically pure 12C (0.01% 13C) graphene determined by the optothermal Raman technique, was higher than 4,000 W mK(-1) at the measured temperature T(m)~320 K, and more than a factor of two higher than the value of K in graphene sheets composed of a 50:50 mixture of 12C and 13C. The experimental data agree well with our molecular dynamics (MD) simulations, corrected for the long-wavelength phonon contributions by means of the Klemens model. The experimental results are expected to stimulate further studies aimed at a better understanding of thermal phenomena in 2D crystals.


ACS Nano | 2011

Graphene growth using a solid carbon feedstock and hydrogen.

Hengxing Ji; Yufeng Hao; Yujie Ren; Matthew Charlton; Wi Hyoung Lee; Qingzhi Wu; Huifeng Li; Yanwu Zhu; Yaping Wu; Richard D. Piner; Rodney S. Ruoff

Graphene has been grown on Cu at elevated temperatures with different carbon sources (gaseous hydrocarbons and solids such as polymers); however the detailed chemistry occurring at the Cu surface is not yet known. Here, we explored the possibility of obtaining graphene using amorphous-carbon thin films, without and with hydrogen gas added. Graphene is formed only in the presence of H(2)(g), which strongly suggests that gaseous hydrocarbons and/or their intermediates are what yield graphene on Cu through the reaction of H(2)(g) and the amorphous carbon. The large area, uniform monolayer graphene obtained had electron and hole mobilities of 2520 and 2050 cm(2) V(-1) s(-1), respectively.


Advanced Materials | 2013

Crystal Structure Evolution of Individual Graphene Islands During CVD Growth on Copper Foil

Yaping Wu; Yufeng Hao; Hu Young Jeong; Zonghoon Lee; Shanshan Chen; Wei Jiang; Qingzhi Wu; Richard D. Piner; Junyong Kang; Rodney S. Ruoff

Single-crystal percentage of graphene islands on Cu foil is associated with island sizes and shapes. In polycrystalline islands, certain grain boundary types are favored. There is no obvious relation between the number of lobes and grain orientations. An observed structure evolution and surface disorder of Cu grains can be possible factors for the formation of grain boundaries within graphene islands.


Nanoscale Research Letters | 2012

Cytotoxic effects of ZnO hierarchical architectures on RSC96 Schwann cells.

Yixia Yin; Qiang Lin; Haiming Sun; Dan Chen; Qingzhi Wu; Xiaohui Chen; Shipu Li

The alteration in intracellular Zn2+ homeostasis is attributed to the generation of intracellular reactive oxygen species, which subsequently results in oxidative damage of organelles and cell apoptosis. In this work, the neurotoxic effects of ZnO hierarchical architectures (nanoparticles and microspheres, the prism-like and flower-like structures) were evaluated through the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay using RSC96 Schwann cells as the model. Cell apoptosis and cell cycle were detected using flow cytometry. The concentration of Zn2+ in the culture media was monitored using atomic absorption spectrometry. The results show that ZnO nanoparticles and microspheres displayed significant cytotoxic effects on RSC96 Schwann cells in dose- and time-dependent manners, whereas no or low cytotoxic effect was observed when the cells were treated with the prism-like and flower-like ZnO. A remarkable cell apoptosis and G2/M cell cycle arrest were observed when RSC96 Schwann cells were exposed to ZnO nanoparticles and microspheres at a dose of 80 μg/mL for 12 h. The time-dependent increase of Zn2+ concentration in the culture media suggests that the cytotoxic effects were associated with the decomposition of ZnO hierarchical architecture and the subsequent release of Zn2+. These results provide new insights into the cytotoxic effects of complex ZnO architectures, which could be prominently dominated by nanoscale building blocks.


Scientific Reports | 2016

Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets.

Yushi Yang; Zhou Mao; Wenjie Huang; Lihua Liu; Junli Li; Jialiang Li; Qingzhi Wu

CeO2 nanoparticles (NPs) have been well demonstrated as an antioxidant in protecting against oxidative stress-induced cellular damages and a potential therapeutic agent for various diseases thanks to their redox enzyme-mimicking activities. The Ce3+/Ce4+ ratio and oxygen vacancies on the surface have been considered as the major originations responsible for the redox enzyme-mimicking activities of CeO2 NPs. Herein, CeO2 nanostructures (nanocubes and nanorods) exposed different facets were synthesized via a facile hydrothermal method. The characterizations by X-ray photoelectron spectroscopy, Raman spectroscopy, and UV-Vis spectroscopy show that the Ce3+/Ce4+ ratio and oxygen vacancy content on the surfaces of as-synthesized CeO2 nanostructures are nearly at the same levels. Meanwhile, the enzymatic activity measurements indicate that the redox enzyme-mimicking activities of as-synthesized CeO2 nanostructures are greatly dependent on their exposed facets. CeO2 nanocubes with exposed {100} facets exhibit a higher peroxidase but lower superoxide dismutase activity than those of the CeO2 nanorods with exposed {110} facets. Our results provide new insights into the redox enzyme-mimicking activities of CeO2 nanostructures, as well as the design and synthesis of inorganic nanomaterials-based artificial enzymes.


RSC Advances | 2013

Amino acid-assisted synthesis of superparamagnetic CoFe2O4 nanostructures for the selective adsorption of organic dyes

Mingyan Dong; Qiang Lin; Dan Chen; Xinning Fu; Min Wang; Qingzhi Wu; Xiaohui Chen; Shipu Li

We report a facile synthesis of superparamagnetic CoFe2O4 nanostructures with the assistance of an amino acid (lysine). Monodisperse CoFe2O4 nanospheres and nanoparticles were obtained by adjusting the synthesis parameters (such as the molar ratio of reactants and the solvent). The samples were characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and Fourier-transform infrared spectroscopy. The magnetic property and measured zeta potential shows that both CoFe2O4 nanostructures were superparamagnetic and positively charged. The adsorption performance of the CoFe2O4 nanostructures was evaluated using different dyes, namely, methylene blue, Congo red, Acid Blue 80, methyl orange, rhodamine B, and Cationic red X-GTL, as models. The results show that CoFe2O4 nanospheres consisting of nanoparticles display high adsorption performance on methylene blue, methyl orange, and Congo red, whereas CoFe2O4 nanoparticles prefer adsorbing rhodamine B and Congo red. Therefore, the tunable synthesis of superparamagnetic CoFe2O4 nanostructures provides promising applications for the selective and highly efficient removal of various organic contaminants from industrial effluents.


Nanoscale Research Letters | 2016

Synthesis of PtM (M=Co, Ni)/Reduced Graphene Oxide Nanocomposites as Electrocatalysts for the Oxygen Reduction Reaction

Jialiang Li; Xinning Fu; Zhou Mao; Yushi Yang; Tong Qiu; Qingzhi Wu

A series of PtM (M=Co, Ni)/reduced graphene oxide (rG-O) nanocomposites were successfully synthesized through a facile hydrothermal method. The as-synthesized nanocomposites were characterized using transmission electron microscopy and high-resolution transmission electron microscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectrometer, and X-ray photoelectron spectroscopy. The electrochemical performance and oxygen reduction reaction (ORR) activity of PtM/rG-O nanocomposites were evaluated using cyclic voltammetry and the rotating disk electrode method. The results show that the addition of the reductant (1,2-hexadecanediol, HAD) in the reaction system slightly improved the ORR activity of PtM/rG-O nanocomposites with a negligible influence on the size and morphology of alloy NPs. Furthermore, PtNi/rG-O nanocomposites displayed the higher electrochemical stability than PtCo/rG-O nanocomposites. These results provide a facile strategy for the synthesis of Pt-based alloy NPs/rG-O nanocomposites for applications in catalysis and energy-related processes.


International Journal of Nanomedicine | 2012

Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation

Haiming Sun; Xiaohui Chen; Dan Chen; Mingyan Dong; Xinning Fu; Qian Li; Xi Liu; Qingzhi Wu; Tong Qiu; Tao Wan; Shipu Li

Malignant gliomas are primary brain tumors with high rates of morbidity and mortality; they are the fourth most common cause of cancer death. Novel diagnostic and therapeutic techniques based on nanomaterials provide promising options in the treatment of malignant gliomas. In order to evaluate the potential of FePt nanoparticles (NPs) for malignant glioma therapy, FePt NPs with different surface coatings and components were tunably synthesized using oleic acid/oleylamine (OA/OA) and cysteines (Cys) as the capping agents, respectively. The samples were characterized using X-ray diffraction, transmission electron microscopy (TEM), X-ray photon spectroscopy, Fourier transform infrared spectroscopy, atomic absorption spectrum, and zeta potential. The influence of the surface coatings and components of the FePt NPs on the proliferation of glioma cells was assessed through MTT assay and TEM observation using three typical glioma cell lines (glioma U251 cells, astrocytoma U87 cells, and neuroglioma H4 cells) as in vitro models. The results showed that the proliferation of glioma cells was significantly suppressed by lipophilic FePt-OA/OA NPs in a time- and/or dose-dependent manner, while no or low cytotoxic effects were detected in the case of hydrophilic FePt-Cys NPs. The IC50 value of FePt-OA/OA NPs on the three glioma cell lines was approximately 5–10 μg mL−1 after 24 hours’ incubation. Although the cellular uptake of FePt NPs was confirmed regardless of the surface coatings and components of the FePt NPs, the suppression of FePt NPs on glioma cell proliferation was dominantly determined by their surface coatings rather than their components. Therefore, these results demonstrate that, through engineering of the surface coating, FePt NPs can potentially be developed as novel therapeutic agents for malignant gliomas.


RSC Advances | 2018

Preparation of poly(lactic acid)/graphene oxide nanofiber membranes with different structures by electrospinning for drug delivery

Zhou Mao; Jialiang Li; Wenjie Huang; Hao Jiang; Bhahat Lawlley Zimba; Li Chen; Jiangling Wan; Qingzhi Wu

Nanofiber membranes display promising potential in biomedical fields, especially as scaffolds for drug delivery and tissue engineering. The structures and components of nanofibers play crucial roles in improving the mechanical properties and drug-releasing performance of nanofiber membranes. In this work, poly(lactic acid) (PLA)/graphene oxide (GO) nanofiber membranes with different structures (single-axial and co-axial structure) were prepared by electrospinning. The morphologies, structures, and mechanical properties of the as-prepared nanofiber membranes were characterized and compared. Furthermore, the drug-releasing performance of the as-prepared nanofiber membranes with different structures was evaluated by using an organic dye (Rhodamine B, RhB) as a drug model. Results show that the addition of GO not only significantly improved the thermal stability and mechanical properties of the PLA nanofiber membranes, but also promoted the cumulative release and release rate of RhB from nanofiber membranes. At the same GO concentration, the nanofiber membrane with the co-axial structure displayed a higher tensile strength and Youngs modulus, but exhibited a lower cumulative release and release rate. The formation of the co-axial structure is beneficial in suppressing the initial burst release of RhB from nanofiber membranes.


Nanoscale Research Letters | 2016

Enhanced Resolution of DNA Separation Using Agarose Gel Electrophoresis Doped with Graphene Oxide

Jialiang Li; Yushi Yang; Zhou Mao; Wenjie Huang; Tong Qiu; Qingzhi Wu

In this work, a novel agarose gel electrophoresis strategy has been developed for separation of DNA fragments by doping graphene oxide (GO) into agarose gel. The results show that the addition of GO into agarose gel significantly improved the separation resolution of DNA fragments by increasing the shift distances of both the single DNA fragments and the adjacent DNA fragments and completely eliminating the background noise derived from the diffusion of the excessive ethidium bromide (EB) dye in the gel after electrophoresis. The improved resolution of DNA fragments in GO-doped agarose gel could be attributed to the successive adsorption-desorption processes between DNA fragments and GO sheets, while the elimination of the background noise could be attributed to the adsorption of the excessive EB dye on the surface of GO sheets and high fluorescence quenching efficiency of GO. These results provide promising potential for graphene and its derivate utilized in various electrophoresis techniques for separation and detection of DAN fragments and other biomolecules.

Collaboration


Dive into the Qingzhi Wu's collaboration.

Top Co-Authors

Avatar

Dan Chen

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rodney S. Ruoff

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xinning Fu

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhou Mao

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mingyan Dong

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Qiang Lin

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shipu Li

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yushi Yang

Wuhan University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge