Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qingzhong Wang is active.

Publication


Featured researches published by Qingzhong Wang.


Nature Genetics | 2011

Common variants on 8p12 and 1q24.2 confer risk of schizophrenia

Yongyong Shi; Zhiqiang Li; Qi Xu; Ti Wang; Tao Li; Jiawei Shen; Fengyu Zhang; Jianhua Chen; Guoquan Zhou; Weidong Ji; Baojie Li; Yifeng Xu; Dengtang Liu; Peng Wang; Ping Yang; Benxiu Liu; Wensheng Sun; Chunling Wan; Shengying Qin; Guang He; Stacy Steinberg; Sven Cichon; Thomas Werge; Engilbert Sigurdsson; Sarah Tosato; Aarno Palotie; Markus M. Nöthen; Marcella Rietschel; Roel A. Ophoff; David A. Collier

Schizophrenia is a severe mental disorder affecting ∼1% of the world population, with heritability of up to 80%. To identify new common genetic risk factors, we performed a genome-wide association study (GWAS) in the Han Chinese population. The discovery sample set consisted of 3,750 individuals with schizophrenia and 6,468 healthy controls (1,578 cases and 1,592 controls from northern Han Chinese, 1,238 cases and 2,856 controls from central Han Chinese, and 934 cases and 2,020 controls from the southern Han Chinese). We further analyzed the strongest association signals in an additional independent cohort of 4,383 cases and 4,539 controls from the Han Chinese population. Meta-analysis identified common SNPs that associated with schizophrenia with genome-wide significance on 8p12 (rs16887244, P = 1.27 × 10−10) and 1q24.2 (rs10489202, P = 9.50 × 10−9). Our findings provide new insights into the pathogenesis of schizophrenia.


Cell Research | 2015

Recurrent gain-of-function USP8 mutations in Cushing's disease

Zengyi Ma; Zhijian Song; Jianhua Chen; Yongfei Wang; Shiqi Li; Liangfu Zhou; Ying Mao; Yiming Li; Ronggui Hu; Zhaoyun Zhang; Hongying Ye; Ming Shen; Xuefei Shou; Zhiqiang Li; Hong Peng; Qingzhong Wang; Daizhan Zhou; Xiaolan Qin; Jue Ji; Jie Zheng; Hong Chen; Yin Wang; Geng D; Weijun Tang; Chaowei Fu; Zhifeng Shi; Yichao Zhang; Zhao Ye; Wenqiang He; Qilin Zhang

Cushings disease, also known as adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas (PAs) that cause excess cortisol production, accounts for up to 85% of corticotrophin-dependent Cushings syndrome cases. However, the genetic alterations in this disease are unclear. Here, we performed whole-exome sequencing of DNA derived from 12 ACTH-secreting PAs and matched blood samples, which revealed three types of somatic mutations in a candidate gene, USP8 (encoding ubiquitin-specific protease 8), exclusively in exon 14 in 8 of 12 ACTH-secreting PAs. We further evaluated somatic USP8 mutations in additional 258 PAs by Sanger sequencing. Targeted sequencing further identified a total of 17 types of USP8 variants in 67 of 108 ACTH-secreting PAs (62.04%). However, none of these mutations was detected in other types of PAs (n = 150). These mutations aggregate within the 14-3-3 binding motif of USP8 and disrupt the interaction between USP8 and 14-3-3 protein, resulting in an elevated capacity to protect EGFR from lysosomal degradation. Accordingly, PAs with mutated USP8 display a higher incidence of EGFR expression, elevated EGFR protein abundance and mRNA expression levels of POMC, which encodes the precursor of ACTH. PAs with mutated USP8 are significantly smaller in size and have higher ACTH production than wild-type PAs. In surgically resected primary USP8-mutated tumor cells, USP8 knockdown or blocking EGFR effectively attenuates ACTH secretion. Taken together, somatic gain-of-function USP8 mutations are common and contribute to ACTH overproduction in Cushings disease. Inhibition of USP8 or EGFR is promising for treating USP8-mutated corticotrophin adenoma. Our study highlights the potentially functional mutated gene in Cushings disease and provides insights into the therapeutics of this disease.


Molecular Psychiatry | 2005

Identifying potential risk haplotypes for schizophrenia at the DTNBP1 locus in Han Chinese and Scottish populations

Tao Li; Fuchang Zhang; X Liu; Xueli Sun; Pak Sham; Caroline Crombie; Xiaohong Ma; Qingzhong Wang; Huaqing Meng; Wei Deng; P Yates; Xun Hu; Nicholas Walker; Robin M. Murray; D. St Clair; David A. Collier

The dystrobrevin-binding protein 1 (DTNBP1) gene on chromosome 6p has emerged as a potential susceptibility gene for schizophrenia. Although a number of attempts to replicate the original association finding have been successful, they have not identified any obvious pathogenic variants or a single at risk haplotype common to all populations studied. In the present study we attempted further replication in an independent sample of 638 nuclear families from the Han Chinese population of Sichuan Province, SW China. We also examined 580 Scottish schizophrenic cases and 620 controls. We genotyped 10 single-nucleotide polymorphisms (SNPs) in DTNBP1 that were used in the original report of association, plus rs2619538 (SNP ‘A’) in the putative promoter region, which has also been associated with schizophrenia. In the Chinese trios we found that two SNPs (P1635 and P1765) were significantly overtransmitted, but with alleles opposite to those reported in the original studies. SNPs P1757 and P1765 formed a common haplotype, which also showed significant overtransmission. In the Scottish cases and controls, no individual markers were significantly associated with schizophrenia. A single haplotype, which included rs2619538 and P1583, and one rare haplotype, composed of P1320 and P1757, were significantly associated with schizophrenia, but no previously reported haplotypes were associated. Based on the data from the Chinese population, our results provide statistical support for DTNBP1 as a susceptibility gene for schizophrenia, albeit with haplotypes different from those of the original study. However, our lack of replication in the Scottish samples also indicates that caution is warranted when evaluating the robustness of the evidence for DTNBP1 as genetic risk factor for schizophrenia.


British Journal of Psychiatry | 2014

CACNA1C, schizophrenia and major depressive disorder in the Han Chinese population

Kuanjun He; Zhiguo An; Qingzhong Wang; Tao Li; Zhiqiang Li; Jianhua Chen; Wenjin Li; Ti Wang; Jue Ji; Guoyin Feng; He Lin; Qizhong Yi; Yongyong Shi

BACKGROUND Common psychiatric disorders are highly heritable, indicating that genetic factors play an important role in their aetiology. The CACNA1C gene, which codes for subunit alpha-1C of the Cav1.2 voltage-dependent L-type calcium channel, has been consistently found to be the shared risk gene for several kinds of mental disorder. AIMS To investigate whether CACNA1C is a susceptibility gene for schizophrenia and major depressive disorder in the Han Chinese population. METHOD We carried out a case-control study of 1235 patients with schizophrenia, 1045 with major depressive disorder and 1235 healthy controls. A tag single nucleotide polymorphism (SNP) rs1006737 along with another 10 tag SNPs in the CACNA1C gene were genotyped in all samples. RESULTS We found that rs1006737 was associated with both schizophrenia (P(allele) = 0.0014, P(genotype) = 0.006, odds ratio (OR) = 1.384, 95% CI 1.134-1.690) and major depressive disorder (P(allele) = 0.0007, P(genotype) = 0.003, OR = 1.425, 95% CI 1.160-1.752). CONCLUSIONS Our findings support CACNA1C being a risk gene for both schizophrenia and major depressive disorder in the Han Chinese population.


Nature Genetics | 2017

Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia

Zhiqiang Li; Jianhua Chen; Hao Yu; Lin He; Yifeng Xu; Dai Zhang; Qizhong Yi; Changgui Li; Xingwang Li; Jiawei Shen; Zhijian Song; Weidong Ji; Meng Wang; Juan Zhou; Boyu Chen; Yahui Liu; Jiqiang Wang; Peng Wang; Ping Yang; Qingzhong Wang; Guoyin Feng; Benxiu Liu; Wensheng Sun; Baojie Li; Guang He; Weidong Li; Chunling Wan; Qi Xu; Wenjin Li; Zujia Wen

We conducted a genome-wide association study (GWAS) with replication in 36,180 Chinese individuals and performed further transancestry meta-analyses with data from the Psychiatry Genomics Consortium (PGC2). Approximately 95% of the genome-wide significant (GWS) index alleles (or their proxies) from the PGC2 study were overrepresented in Chinese schizophrenia cases, including ∼50% that achieved nominal significance and ∼75% that continued to be GWS in the transancestry analysis. The Chinese-only analysis identified seven GWS loci; three of these also were GWS in the transancestry analyses, which identified 109 GWS loci, thus yielding a total of 113 GWS loci (30 novel) in at least one of these analyses. We observed improvements in the fine-mapping resolution at many susceptibility loci. Our results provide several lines of evidence supporting candidate genes at many loci and highlight some pathways for further research. Together, our findings provide novel insight into the genetic architecture and biological etiology of schizophrenia.


Journal of Affective Disorders | 2015

The GSK3B gene confers risk for both major depressive disorder and schizophrenia in the Han Chinese population

Jianhua Chen; Meng Wang; Raja Amjad Waheed Khan; Kuanjun He; Qingzhong Wang; Zhiqiang Li; Jiawei Shen; Zhijian Song; Wenjin Li; Zujia Wen; Yiwen Jiang; Yifeng Xu; Yongyong Shi; Weidong Ji

BACKGROUND Glycogen synthease kinase-3B is a key gene encoding a protein kinase which is abundant in brain, and is involved in signal transduction cascades of neuronal cell development and energy metabolism. Previous researches proposed GSK3B as a potential region for schizophrenia. METHOD To validate the susceptibility of GSK3B to major depressive disorder, and to investigate the overlapping risk conferred by GSK3B for mental disorders, we performed a large-scale case-control study, analyzed 6 tag single nucleotide polymorphisms using TaqMan® technology in 1,045 major depressive disorder patients, 1,235 schizophrenia patients and 1,235 normal controls of Han Chinese origin. RESULTS We found rs334535 (Pallele=2.79E-03, Pgenotype=5.00E-03, OR=1.429) and rs2199503 (Pallele=0.020, Pgenotype= 0.040, OR=1.157) showed association with major depressive disorder before Bonferroni correction. rs6771023 (adjusted Pallele=1.64E-03, adjusted Pgenotype=6.00E-03, OR=0.701) and rs2199503 (adjusted Pallele=0.001, adjusted Pgenotype=0.002, OR=1.251) showed significant association with schizophrenia after Bonferroni correction. rs2199503 (adjusted Pallele=1.70E-03, adjusted Pgenotype=0.006, OR=1.208) remained to be significant in the combined cases of major depressive disorder and schizophrenia after Bonferroni correction. LIMITATIONS Further validations of our findings in samples with larger scale are suggested, and functional genomic study is needed to elucidate the role of GSK3B in signal pathway and psychiatric disorders. CONCLUSIONS Our results provide evidence that the GSK3B gene could be a promising region which contains genetic risk for both major depressive disorder and schizophrenia in the Han Chinese population. The study on variants conferring overlapping risk for multiple psychiatric disorders could be tangible pathogenesis support and clinical or diagnostic references.


British Journal of Psychiatry | 2015

Loci with genome-wide associations with schizophrenia in the Han Chinese population.

Zhiqiang Li; Yuqian Xiang; Jianhua Chen; Qiaoli Li; Jiawei Shen; Yun Liu; Wenjin Li; Qinghe Xing; Qingzhong Wang; Lei Wang; Guoyin Feng; Lin He; Xinzhi Zhao; Yongyong Shi

BACKGROUND A large schizophrenia genome-wide association study (GWAS) and a subsequent extensive replication study of individuals of European ancestry identified eight new loci with genome-wide significance and suggested that the MIR137-mediated pathway plays a role in the predisposition for schizophrenia. AIMS To validate the above findings in a Han Chinese population. METHOD We analysed the single nucleotide polymorphisms (SNPs) in the newly identified schizophrenia candidate loci and predicted MIR137 target genes based on our published Han Chinese populations (BIOX) GWAS data. We then analysed 18 SNPs from the candidate regions in an independent cohort that consisted of 3585 patients with schizophrenia and 5496 controls of Han Chinese ancestry. RESULTS We replicated the associations of five markers (P<0.05), including three that were located in the predicted MIR137 target genes. Two loci (ITIH3/4: rs2239547, P = 1.17 × 10(-10) and CALN1: rs2944829, P = 9.97 × 10(-9)) exhibited genome-wide significance in the Han Chinese population. CONCLUSIONS The ITIH3/4 locus has been reported to be of genome-wide significance in the European population. The successful replication of this finding in a different ethnic group provides stronger evidence for the association between schizophrenia and ITIH3/4. We detected the first genome-wide significant association of schizophrenia with CALN1, which is a predicted target of MIR137, and thus provide new evidence for the associations between MIR137 targets and schizophrenia.


Biological Psychiatry | 2016

Genome-wide Analysis of the Role of Copy Number Variation in Schizophrenia Risk in Chinese

Zhiqiang Li; Jianhua Chen; Yifeng Xu; Qizhong Yi; Weidong Ji; Peng Wang; Jiawei Shen; Zhijian Song; Meng Wang; Ping Yang; Qingzhong Wang; Guoyin Feng; Benxiu Liu; Wensheng Sun; Qi Xu; Baojie Li; Lin He; Guang He; Wenjin Li; Zujia Wen; Ke Liu; Fang Huang; Juan Zhou; Jue Ji; Xingwang Li; Yongyong Shi

BACKGROUND Compelling evidence suggested the role of copy number variations (CNVs) in schizophrenia susceptibility. Most of the evidence was from studies in populations with European ancestry. We tried to validate the associated CNV loci in a Han Chinese population and identify novel loci conferring risk of schizophrenia. METHODS We performed a genome-wide CNV analysis on 6588 patients with schizophrenia and 11,904 control subjects of Han Chinese ancestry. RESULTS Our data confirmed increased genome-wide CNV (>500 kb and <1%) burden in schizophrenia, and the increasing trend was more significant when only >1 Mb CNVs were considered. We also replicated several associated loci that were previously identified in European populations, including duplications at 16p11.2, 15q11.2-13.1, 7q11.23, and VIPR2 and deletions at 22q11.2, 1q21.1-q21.2, and NRXN1. In addition, we discovered three additional new potential loci (odds ratio >6, p < .05): duplications at 1p36.32, 10p12.1, and 13q13.3, involving many neurodevelopmental and synaptic related genes. CONCLUSIONS Our findings provide further support for the role of CNVs in the etiology of schizophrenia.


American Journal of Medical Genetics | 2015

Genetic association of ACSM1 variation with schizophrenia and major depressive disorder in the Han Chinese population

Wenjin Li; Weidong Ji; Zhiqiang Li; Kuanjun He; Qingzhong Wang; Jianhua Chen; Yu Qiang; Guoyin Feng; Xingwang Li; Jiawei Shen; Zujia Wen; Jue Ji; Yongyong Shi

Schizophrenia (SCZ) and major depressive disorder (MDD) are two of the most common and severe mental disorders, the etiologies of which are not yet clearly elucidated. The ACSM1 gene has been identified as a susceptibility gene for SCZ in two previous genome‐wide association studies (GWAS). ACSM1 catalyzes the activation of fatty acids and plays an important role in the metabolic system. Some evidence has suggested that ACSM1 contributes to a genetic risk for MDD. The present study aimed to evaluate the common genetic risk of the ACSM1 gene in these two disorders in the Han Chinese population. In total, 1235 patients with SCZ, 1045 patients with MDD and 1235 control subjects of Chinese origin were recruited. Six single nuclear polymorphisms (SNPs) in ACSM1 were genotyped to test their associations with SCZ and MDD. SNP rs163234 was found to be significantly associated with both SCZ (permutated Pallele = 1.700 × 10−3, OR = 1.350 [95% CI = 1.152–1.581]) and MDD (permutated Pallele = 4.800 × 10−3, OR = 1.329 [95% CI = 1.127–1.567]). SNP rs433598 showed a strong association with SCZ (permutated Pallele = 4.300 × 10−3, OR = 1.303 [95% CI = 1.117–1.520]). Haplotype analysis of the blocks containing the two positive markers also revealed a significant association. This is the first study to assess the possible association of the ACSM1 gene with a genetic susceptibility for MDD. Our data are the first to suggest a positive association of the ACSM1 gene with a genetic susceptibility for SCZ and MDD in the Han Chinese population.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014

ITIH family genes confer risk to schizophrenia and major depressive disorder in the Han Chinese population.

Kuanjun He; Qingzhong Wang; Jianhua Chen; Tao Li; Zhiqiang Li; Wenjin Li; Zujia Wen; Yu Qiang; Meng Wang; Jiawei Shen; Zhijian Song; Jue Ji; Guoyin Feng; Shuguang Qi; He Lin; Yongyong Shi; Zaohuo Cheng

As a major extracellular matrix component, ITIHs played an important role in inflammation and carcinogenesis. Several genome-wide association studies have reported that some positive signals which were derived from the tight linkage disequilibrium region on chromosome 3p21 were associated with both schizophrenia and bipolar disorders in the Caucasian population. To further investigate whether this genomic region is also a susceptibility locus of schizophrenia and major depressive disorder in the Han Chinese population, we conducted this study by recruiting 1235 schizophrenia patients, 1045 major depressive disorder patients and 1235 healthy control subjects in the Han Chinese samples for a case-control study. We genotyped seven SNPs within this region using TaqMan® technology. We found that rs2710322 was significantly associated with schizophrenia (adjusted P(allele) = 0.0018, adjusted P(genotype) = 0.006, OR [95% CI] = 1.278 [1.117-1.462]) while rs1042779 was weakly associated with schizophrenia (adjusted P(allele) = 0.048, OR [95% CI] = 1.164 [1.040-1.303]) and major depressive disorder (adjusted P(allele) = 0.042, OR [95% CI] = 1.178 [1.047-1.326]); it was also our finding that rs3821831 was positively associated with major depressive disorder (adjusted P(allele) = 0.003, adjusted P(genotype) = 0.006, OR [95% CI] = 1.426 [1.156-1.760]). Furthermore, no haplotype was found to be associated with schizophrenia and major depressive disorder. Via the association analysis which combines the schizophrenia and major depressive disorder cases, we also notice that rs1042779 and rs3821831 were significantly associated with combined cases (rs1042779: adjusted P(allele) = 0.012, adjusted P(genotype) = 0.018, OR [95% CI] = 1.171 [1.060-1.292]; rs3821831:adjusted P(genotype) = 0.012, OR [95% CI] = 1.193 [1.010-1.410]). Our results revealed that the shared genetic risk factors of both schizophrenia and major depressive disorder exist in ITIH family genes in the Han Chinese population.

Collaboration


Dive into the Qingzhong Wang's collaboration.

Top Co-Authors

Avatar

Zhiqiang Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jianhua Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yongyong Shi

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jiawei Shen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wenjin Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zujia Wen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Kuanjun He

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Jue Ji

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Guoyin Feng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Weidong Ji

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge