Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qinjun Kang is active.

Publication


Featured researches published by Qinjun Kang.


Journal of Computational Physics | 2010

Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods

Moran Wang; Qinjun Kang

We present a numerical framework to solve the dynamic model for electrokinetic flows in microchannels using coupled lattice Boltzmann methods. The governing equation for each transport process is solved by a lattice Boltzmann model and the entire process is simulated through an iteration procedure. After validation, the present method is used to study the applicability of the Poisson-Boltzmann model for electrokinetic flows in microchannels. Our results show that for homogeneously charged long channels, the Poisson-Boltzmann model is applicable for a wide range of electric double layer thickness. For the electric potential distribution, the Poisson-Boltzmann model can provide good predictions until the electric double layers fully overlap, meaning that the thickness of the double layer equals the channel width. For the electroosmotic velocity, the Poisson-Boltzmann model is valid even when the thickness of the double layer is 10 times of the channel width. For heterogeneously charged microchannels, a higher zeta potential and an enhanced velocity field may cause the Poisson-Boltzmann model to fail to provide accurate predictions. The ionic diffusion coefficients have little effect on the steady flows for either homogeneously or heterogeneously charged channels. However the ionic valence of solvent has remarkable influences on both the electric potential distribution and the flow velocity even in homogeneously charged microchannels. Both theoretical analyses and numerical results indicate that the valence and the concentration of the counter-ions dominate the Debye length, the electrical potential distribution, and the ions transport. The present results may improve the understanding of the electrokinetic transport characteristics in microchannels.


International Journal of Heat and Mass Transfer | 2015

Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

Qing Li; Qinjun Kang; Marianne M. Francois; Y. L. He; K.H. Luo

A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.


Analytical Chemistry | 2009

Electrokinetic Transport in Microchannels with Random Roughness

Moran Wang; Qinjun Kang

We present a numerical framework to model the electrokinetic transport in microchannels with random roughness. The three-dimensional microstructure of the rough channel is generated by a random generation-growth method with three statistical parameters to control the number density, the total volume fraction, and the anisotropy characteristics of roughness elements. The governing equations for the electrokinetic transport are solved by a high-efficiency lattice Poisson-Boltzmann method in complex geometries. The effects from the geometric characteristics of roughness on the electrokinetic transport in microchannels are therefore modeled and analyzed. For a given total roughness volume fraction, a higher number density leads to a lower fluctuation because of the random factors. The electroosmotic flow rate increases with the roughness number density nearly logarithmically for a given volume fraction of roughness but decreases with the volume fraction for a given roughness number density. When both the volume fraction and the number density of roughness are given, the electroosmotic flow rate is enhanced by the increase of the characteristic length along the external electric field direction but is reduced by that in the direction across the channel. For a given microstructure of the rough microchannel, the electroosmotic flow rate decreases with the Debye length. It is found that the shape resistance of roughness is responsible for the flow rate reduction in the rough channel compared to the smooth channel even for very thin double layers, and hence plays an important role in microchannel electroosmotic flows.


Physical Review E | 2015

Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect.

Li Chen; Wen-Zhen Fang; Qinjun Kang; De'Haven Hyman J; Hari S. Viswanathan; Wen-Quan Tao

Gas slippage occurs when the mean free path of the gas molecules is in the order of the characteristic pore size of a porous medium. This phenomenon leads to Klinkenbergs effect where the measured permeability of a gas (apparent permeability) is higher than that of the liquid (intrinsic permeability). A generalized lattice Boltzmann model is proposed for flow through porous media that includes Klinkenbergs effect, which is based on the model of Guo et al. [Phys. Rev. E 65, 046308 (2002)]. The second-order Beskok and Karniadakis-Civans correlation [A. Beskok and G. Karniadakis, Microscale Thermophys. Eng. 3, 43 (1999) and F. Civan, Transp. Porous Med. 82, 375 (2010)] is adopted to calculate the apparent permeability based on intrinsic permeability and the Knudsen number. Fluid flow between two parallel plates filled with porous media is simulated to validate the model. Simulations performed in a heterogeneous porous medium with components of different porosity and permeability indicate that Klinkenbergs effect plays a significant role on fluid flow in low-permeability porous media, and it is more pronounced as the Knudsen number increases. Fluid flow in a shale matrix with and without fractures is also studied, and it is found that the fractures greatly enhance the fluid flow and Klinkenbergs effect leads to higher global permeability of the shale matrix.


Journal of Computational Physics | 2013

Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes

Li Chen; Ya-Ling He; Qinjun Kang; Wen-Quan Tao

A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection-diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed.


Philosophical Transactions of the Royal Society A | 2016

Understanding hydraulic fracturing: a multi-scale problem

Jeffrey D. Hyman; Joaquín Jiménez-Martínez; Hari S. Viswanathan; James William Carey; Mark L. Porter; Esteban Rougier; Satish Karra; Qinjun Kang; Luke P. Frash; Li Chen; Zhou Lei; D. O’Malley; Nataliia Makedonska

Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’.


Physical Review E | 2014

Contact angles in the pseudopotential lattice Boltzmann modeling of wetting.

Qing Li; K.H. Luo; Qinjun Kang; Q. Chen

In this paper we investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio ρ_{L}/ρ_{V}=500. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)10.1103/PhysRevE.49.2941] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions, the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles θ<90^{∘}, however, it is unable to reproduce static contact angles close to 180^{∘}. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles θ>90^{∘} as compared with the two other types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.


International Journal of Heat and Mass Transfer | 2014

A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications

Li Chen; Qinjun Kang; Yu-Tong Mu; Ya-Ling He; Wen-Quan Tao


International Journal of Hydrogen Energy | 2012

Pore-scale simulation of coupled multiple physicochemical thermal processes in micro reactor for hydrogen production using lattice Boltzmann method

Li Chen; Qinjun Kang; Ya-Ling He; Wen-Quan Tao


First Thermal and Fluids Engineering Summer Conference | 2016

A GENERALIZED MODEL FOR FLOW THROUGH TIGHT POROUS MEDIA WITH KLINKENBERG'S EFFECT

Li Chen; Qinjun Kang; Hari S. Viswanathan; Ya-Ling He; Wen-Quan Tao

Collaboration


Dive into the Qinjun Kang's collaboration.

Top Co-Authors

Avatar

Li Chen

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Wen-Quan Tao

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Ya-Ling He

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Hari S. Viswanathan

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Li

Central South University

View shared research outputs
Top Co-Authors

Avatar

Esteban Rougier

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

James William Carey

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeffrey D. Hyman

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mark L. Porter

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge