Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qinxue Hu is active.

Publication


Featured researches published by Qinxue Hu.


Journal of Experimental Medicine | 2004

Blockade of Attachment and Fusion Receptors Inhibits HIV-1 Infection of Human Cervical Tissue

Qinxue Hu; Ines Frank; Vennansha Williams; John J. Santos; Patricia Watts; George E. Griffin; John P. Moore; Melissa Pope; Robin J. Shattock

Identification of cellular factors involved in HIV-1 entry and transmission at mucosal surfaces is critical for understanding viral pathogenesis and development of effective prevention strategies. Here we describe the evaluation of HIV-1 entry inhibitors for their ability to prevent infection of, and dissemination from, human cervical tissue ex vivo. Blockade of CD4 alone or CCR5 and CXCR4 together inhibited localized mucosal infection. However, simultaneous blockade of CD4 and mannose-binding C-type lectin receptors including dendritic cell–specific intercellular adhesion molecule–grabbing integrin was required to inhibit HIV-1 uptake and dissemination by migratory cells. In contrast, direct targeting of HIV-1 by neutralizing mAb b12 and CD4-IgG2 (PRO-542) blocked both localized infection and viral dissemination pathways. Flow cytometric analysis and immunostaining of migratory cells revealed two major populations, CD3+HLA-DR− and CD3−HLA-DR+ cells, with a significant proportion of the latter also expressing dendritic cell–specific intercellular adhesion molecule–grabbing integrin. Bead depletion studies demonstrated that such HLA-DR+ cells accounted for as much as 90% of HIV-1 dissemination. Additional studies using immature monocyte-derived dendritic cells demonstrated that although mannose-binding C-type lectin receptors and CD4 are the principal receptors for gp120, other mechanisms may account for virus capture. Our identification of the predominant receptors involved in HIV-1 infection and dissemination within human cervical tissue highlight important targets for microbicide development.


Journal of General Virology | 2015

Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9

Chang Li; Xinmeng Guan; Tao Du; Wei Jin; Biao Wu; Yalan Liu; Ping Wang; Bodan Hu; George E. Griffin; Robin J. Shattock; Qinxue Hu

CCR5 serves as an essential coreceptor for human immunodeficiency virus type 1 (HIV-1) entry, and individuals with a CCR5(Δ32) variant appear to be healthy, making CCR5 an attractive target for control of HIV-1 infection. The CRISPR/Cas9, which functions as a naturally existing adaptive immune system in prokaryotes, has been recently harnessed as a novel nuclease system for genome editing in mammalian cells. Although CRISPR/Cas9 can be readily delivered into cell lines, due to the large size of the Cas9 protein, efficient delivery of CCR5-targeting CRISPR/Cas9 components into primary cells, including CD4(+) T-cells, the primary target for HIV-1 infection in vivo, remains a challenge. In the current study, following design of a panel of top-ranked single-guided RNAs (sgRNAs) targeting the ORF of CCR5, we demonstrate that CRISPR/Cas9 can efficiently mediate the editing of the CCR5 locus in cell lines, resulting in the knockout of CCR5 expression on the cell surface. Next-generation sequencing revealed that various mutations were introduced around the predicted cleavage site of CCR5. For each of the three most effective sgRNAs that we analysed, no significant off-target effects were detected at the 15 top-scoring potential sites. More importantly, by constructing chimeric Ad5F35 adenoviruses carrying CRISPR/Cas9 components, we efficiently transduced primary CD4(+) T-lymphocytes and disrupted CCR5 expression, and the positively transduced cells were conferred with HIV-1 resistance. To our knowledge, this is the first study establishing HIV-1 resistance in primary CD4(+) T-cells utilizing adenovirus-delivered CRISPR/Cas9.


Journal of Virology | 2000

Evolution of the Human Immunodeficiency Virus Type 1 Envelope during Infection Reveals Molecular Corollaries of Specificity for Coreceptor Utilization and AIDS Pathogenesis

Qinxue Hu; Ashley Perkins Barry; Zi-Xuan Wang; Shanon M. Connolly; Stephen C. Peiper; Michael L. Greenberg

ABSTRACT The evolution of human immunodeficiency virus type 1 infection is associated with a shift in the target cell population, driven by variability in coreceptor utilization resulting from diversity inenv. To elucidate the potential consequences of these changes for Env-mediated fusion over the course of AIDS, we examined the biological properties of serial viral isolates and determined coreceptor utilization by the products of env cloned from two individuals, followed from the detection of seroconversion throughout the course of their infection. One had a typical course, and the other had an accelerated progression. Early isolates were non-syncytium inducing, and the corresponding Env exclusively utilized CCR5, whereas Env from late phases of infection showed restricted utilization of CXCR4 in both patients. Env from subject SC24, who had a standard progression, demonstrated multitropism, manifested by utilization of CCR3, CXCR4, and CCR5 in the intervening period. In contrast, Env from patient SC51, who experienced early conversion to the syncytium-inducing phenotype, developed dualtropic coreceptor utilization of CCR5 and CXCR4. Genetic analysis of env from each isolate revealed that those with an X4 phenotype formed a distinct subcluster within each subject. Analysis of chimeras constructed from R5 and multispecific env from patient SC24 demonstrated that while the V3 domain played a dominant role in determining coreceptor utilization, sequences in the V4–V5 region also contributed to the latter phenotype. Immunoprecipitation experiments confirmed that the hybrid Env proteins were expressed at similar levels. These experiments demonstrate that progression from the R5 to X4 phenotype may occur through a multi- or dual-tropic intermediate and that multiple domains contribute to this process.


Journal of General Virology | 2010

The cysteine protease domain of porcine reproductive and respiratory syndrome virus non-structural protein 2 antagonizes interferon regulatory factor 3 activation.

Hongxia Li; Zhenhua Zheng; Peng Zhou; Bing Zhang; Zhengli Shi; Qinxue Hu; Hanzhong Wang

There is growing evidence that porcine reproductive and respiratory syndrome virus (PRRSV) has developed mechanisms to subvert the host innate immune response. PRRSV non-structural protein 2 (Nsp2) was suggested previously as a potential interferon (IFN) antagonist. This study focused on Nsp2 to investigate its inhibitory mechanism of IFN induction. It was demonstrated that Nsp2 strongly inhibited IFN-β production by antagonizing activation of the IFN regulatory factor 3 (IRF-3) pathway induced by the Sendai virus (SeV). Further studies revealed that the cysteine protease domain (PL2) of Nsp2 was necessary for IFN antagonism. Additionally, both full-length Nsp2 and the PL2 protease domain of Nsp2 were found to inhibit SeV-induced phosphorylation and nuclear translocation of IRF-3. These findings suggest that Nsp2 is likely to play an important role in subversion of IRF-3-dependent innate antiviral defences, providing a basis for elucidating the mechanisms underlying PRRSV pathogenesis.


Journal of Immunology | 2012

Herpes Simplex Virus Type 2 Infection of Human Epithelial Cells Induces CXCL9 Expression and CD4+ T Cell Migration via Activation of p38-CCAAT/Enhancer-Binding Protein-β Pathway

Wenjie Huang; Kai Hu; Sukun Luo; Mudan Zhang; Chang Li; Wei Jin; Yalan Liu; George E. Griffin; Robin J. Shattock; Qinxue Hu

Recruitment of CD4+ T cells to infection areas after HSV-2 infection may be one of the mechanisms that account for increased HIV-1 sexual transmission. Lymphocytes recruited by chemokine CXCL9 are known to be important in control of HSV-2 infection in mice, although the underlying mechanism remains to be addressed. Based on our observation that CXCL9 expression is augmented in the cervical mucus of HSV-2–positive women, in this study we demonstrate that HSV-2 infection directly induces CXCL9 expression in primary cervical epithelial cells and cell lines, the principal targets of HSV-2, at both mRNA and protein levels. Further studies reveal that the induction of CXCL9 expression by HSV-2 is dependent upon a binding site for C/EBP-β within CXCL9 promoter sequence. Furthermore, CXCL9 expression is promoted at the transcriptional level through phosphorylating C/EBP-β via p38 MAPK pathway, leading to binding of C/EBP-β to the CXCL9 promoter. Chemotaxis assays indicate that upregulation of CXCL9 expression at the protein level by HSV-2 infection enhances the migration of PBLs and CD4+ T cells, whereas neutralization of CXCL9 or inhibition of p38-C/EBP-β pathway can significantly decrease the migration. Our data together demonstrate that HSV-2 induces CXCL9 expression in human cervical epithelial cells by activation of p38-C/EBP-β pathway through promoting the binding of C/EBP-β to CXCL9 promoter, which may recruit activated CD4+ T cells to mucosal HSV-2 infection sites and potentially increase the risk of HIV-1 sexual transmission.


Journal of Immunology | 2012

Human Bocavirus NP1 Inhibits IFN-β Production by Blocking Association of IFN Regulatory Factor 3 with IFNB Promoter

Zhenfeng Zhang; Zhenhua Zheng; Huanle Luo; Jin Meng; Hongxia Li; Qian Li; Xiaowei Zhang; Xianliang Ke; Bingke Bai; Panyong Mao; Qinxue Hu; Hanzhong Wang

Human bocavirus (HBoV) mainly infects young children. Although many infected children suffer from respiratory or gastroenteric tract diseases, an association between HBoV and these diseases is not definite. Because modulation of type I IFN is crucial for viruses to establish efficient replication, in this study, we tested whether HBoV modulates type I IFN production. We observed that a nearly full-length HBoV clone significantly reduced both Sendai virus (SeV)- and poly(deoxyadenylic-thymidylic) acid-induced IFN-β production. Further study showed that NP1 blocked IFN-β activation in response to SeV, poly(deoxyadenylic-thymidylic) acid, and IFN-β pathway inducers, including retinoic acid-inducible protein I, mitochondrial antiviral signaling protein, inhibitor of κB kinase ε, and TANK-binding kinase 1. In addition, NP1 interfered with IRF-3–responsive PRD(III-I) promoter activated by SeV and a constitutively active mutant of IRF-3 (IRF-3/5D). Although NP1 suppressed the IRF-3 pathway, it did not affect IRF-3 activation processes, including phosphorylation, dimerization, and nuclear translocation. Coimmunoprecipitation assays confirmed the interaction between NP1 and IRF-3. Additional deletion mutagenesis and coimmunoprecipitation assays revealed that NP1 bound to the DNA-binding domain of IRF-3, resulting in the interruption of an association between IRF-3 and IFNB promoter. Altogether, our results indicate that HBoV NP1 blocks IFN production through a unique mechanism. To our knowledge, this is the first study to investigate the modulation of innate immunity by HBoV. Our findings suggest a potential immune-evasion mechanism used by HBoV and provide a basis for better understanding HBoV pathogenesis.


Virology | 2012

Highly conserved HIV-1 gp120 glycans proximal to CD4-binding region affect viral infectivity and neutralizing antibody induction.

Xin Huang; Wei Jin; Kai Hu; Sukun Luo; Tao Du; George E. Griffin; Robin J. Shattock; Qinxue Hu

Glycosylation plays important roles in gp120 structure and HIV-1 immune evasion. In the current study, we introduced deglycosylations into the 24 N-linked glycosylation sites of a R5 env MWS2 cloned from semen and systematically analyzed the impact on infectivity, antigenicity, immunogenicity and sensitivity to entry inhibitors. We found that mutants N156-T158A, N197-S199A, N262-S264A and N410-T412A conferred decreased infectivity and enhanced sensitivity to a series of antibodies and entry inhibitors. When mice were immunized with the DNA of wild-type or mutated gp160, gp140 or gp120; N156-T158A, N262-S264A and N410-T412A were more effective in inducing neutralizing activity against wild-type MWS2 as well as heterologous IIIB and CH811 Envs. In general, gp160 and gp140 induced higher neutralizing activity compared with gp120. Our study demonstrates for the first time that removal of individual glycan N156, N262 or N410 proximal to CD4-binding region impairs viral infectivity and results in enhanced capability to induce neutralizing activity.


Journal of Immunology | 2011

Enterovirus 71 2C Protein Inhibits TNF-α–Mediated Activation of NF-κB by Suppressing IκB Kinase β Phosphorylation

Zhenhua Zheng; Hongxia Li; Zhenfeng Zhang; Jin Meng; Da Mao; Bingke Bai; Baojing Lu; Panyong Mao; Qinxue Hu; Hanzhong Wang

Enterovirus 71 (EV71), a single, positive-stranded RNA virus, has been regarded as the most important neurotropic enterovirus after the eradication of the poliovirus. EV71 infection can cause hand, foot, and mouth disease or herpangina. Cytokine storm with elevated levels of proinflammatory and inflammatory cytokines, including TNF-α, has been proposed to explain the pathogenesis of EV71-induced disease. TNF-α–mediated NF-κB signaling pathway plays a key role in inflammatory response. We hypothesized that EV71 might also moderate host inflammation by interfering with this pathway. In this study, we tested this hypothesis and identified EV71 2C protein as an antagonist of TNF-α–mediated activation of NF-κB signaling pathway. Expression of 2C protein significantly reduced TNF-α–mediated NF-κB activation in 293T cells as measured by gene reporter and gel mobility shift assays. Furthermore, overexpression of TNFR-associated factor 2-, MEK kinase 1-, IκB kinase (IKK)α-, or IKKβ-induced NF-κB activation, but not constitutively active mutant of IKKβ (IKKβ SS/EE)-induced NF-κB activation, was inhibited by 2C protein. These data together suggested that the activation of IKKβ is most likely targeted by 2C; this notion was further strengthened by immunoblot detection of IKKβ phosphorylation and IκBα phosphorylation and degradation. Coimmunoprecipitation and colocalization of 2C and IKKβ expressed in mammalian cells provided compelling evidence that 2C interacts with IKKβ. Collectively, our data indicate that EV71 2C protein inhibits IKKβ activation and thus blocks NF-κB activation.


ACS Nano | 2013

Encapsulating Quantum Dots into Enveloped Virus in Living Cells for Tracking Virus Infection

Yuan Zhang; Xianliang Ke; Zhenhua Zheng; Cuiling Zhang; Zhenfeng Zhang; Fuxian Zhang; Qinxue Hu; Zhike He; Hanzhong Wang

Utilization of quantum dots (QDs) for single virus tracking has attracted growing interest. Through modification of viral surface proteins, viruses can be labeled with various functionalized QDs and used for tracking the routes of viral infections. However, incorporation of QDs on the viral surface may affect the efficiency of viral entry and alter virus-cell interactions. Here, we describe that QDs can be encapsulated into the capsid of vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentivirus (PTLV) in living cells without modification of the viral surface. QDs conjugated with modified genomic RNAs (gRNAs), which contain a packaging signal (Psi) sequence for viral genome encapsulation, can be packaged into virions together with the gRNAs. QD-containing PTLV demonstrated similar entry efficiency as the wild-type PTLV. After infection, QD signals entered the Rab5+ endosome and then moved to the microtubule organizing center of the infected cells in a microtubule-dependent manner. Findings in this study are consistent with previously reported infection routes of VSV and VSV-G pseudotyped lentivirus, indicating that our established QD packaging approach can be used for enveloped virus labeling and tracking.


Journal of Immunology | 2013

CCL19 and CCL28 Augment Mucosal and Systemic Immune Responses to HIV-1 gp140 by Mobilizing Responsive Immunocytes into Secondary Lymph Nodes and Mucosal Tissue

Kai Hu; Sukun Luo; Lina Tong; Xin Huang; Wei Jin; Wenjie Huang; Tao Du; Yan Yan; Siyi He; George E. Griffin; Robin J. Shattock; Qinxue Hu

Induction of broad and potent neutralizing Abs at the mucosal portals of entry remains a primary goal for most vaccines against mucosally acquired viral infections. Selection of appropriate adjuvants capable of promoting both systemic and mucosal responses will be crucial for the development of effective immunization strategies. In this study, we investigated whether plasmid codelivery of cytokines APRIL, CCL19, or CCL28 can enhance Ag-induced immune responses to HIV-1 gp140. Our results demonstrated that pCCL19 and pCCL28, but not pAPRIL, significantly enhanced Ag-specific systemic and mucosal Ab responses. gp140-specific Abs in serum enhanced by pCCL19 or pCCL28 were broadly distributed across all four IgG subclasses, of which IgG1 was predominant. The enhanced systemic and mucosal Abs showed increased neutralizing activity against both homologous and heterologous HIV-1, and potency correlated with gp140-specific serum IgG and vaginal IgA levels. Measurement of gp140-specific cytokines produced by splenocytes demonstrated that pCCL19 and pCCL28 augmented balanced Th1/Th2 responses. pCCL19 and pCCL28 also increased IgA+ cells in colorectal mucosal tissue. pCCL19 codelivery resulted in an increase of CCR7+ CD11c+ cells in mesenteric lymph nodes and both CCR7+ CD11c+ cells and CCR7+ CD3e+ cells in spleen, whereas pCCL28 codelivery resulted in an augment of CCR10+ CD19+ cells in both spleen and mesenteric lymph nodes. Together, our data indicate that pCCL19 and pCCL28 can enhance HIV-1 envelope–specific systemic and mucosal Ab responses, as well as T cell responses. Such enhancements appear to be associated with mobilization of responsive immunocytes into secondary lymphoid organs and mucosal tissues through interactions with corresponding receptors.

Collaboration


Dive into the Qinxue Hu's collaboration.

Top Co-Authors

Avatar

Hanzhong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhenhua Zheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kai Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tao Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yalan Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhenfeng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sukun Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mudan Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge