Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiong Lin is active.

Publication


Featured researches published by Qiong Lin.


Autophagy | 2017

The E3 ubiquitin ligase NEDD4 is an LC3-interactive protein and regulates autophagy

Aiqin Sun; Jing Wei; Chandra Childress; John H. Shaw; Ke Peng; Genbao Shao; Wannian Yang; Qiong Lin

ABSTRACT The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.


Molecular Cancer | 2014

Nedd4-1 is an exceptional prognostic biomarker for gastric cardia adenocarcinoma and functionally associated with metastasis

Aiqin Sun; Guanzhen Yu; Xiaoyan Dou; Xiaowei Yan; Wannian Yang; Qiong Lin

BackgroundGastric cardia adenocarcinoma (GCA) is the most aggressive subtype of gastric carcinoma. New molecular markers and therapeutic targets are needed for diagnosis, prognosis and treatment of GCA. This study is to establish the E3 ubiquitin ligase Nedd4-1 as a prognostic biomarker to predict the survival and guide the treatment of GCA patients.MethodsExpression of Nedd4-1 in 214 GCA tumor samples was detected by immunohistochemistry staining (IHC) using tissue microarray assay (TMA). Association of Nedd4-1 with cumulative survival of the TNM stages I-III patients and clinicopathological characteristics was statistically analyzed. The role of Nedd4-1 in gastric cancer cell migration and invasion were determined by transwell and wound healing assays.ResultsNedd4-1 is overexpressed in 83% of the GCA tumors. The 5-year survival rate in Nedd4-1 negative GCA patients is as high as 96%. Log-rank analysis indicated that overexpression of Nedd4-1 is inversely correlated with cumulative survival (χ2 = 21.885, p <0.001). Multivariate logistic regression analysis showed that overexpression of Nedd4-1 is associated with an extremely low GCA survival rate with a hazard ratio (HR) = 0.068 (p = 0.008) in TNM stages I-III patients. Statistical analysis of association of Nedd4-1 overexpression with clinicopathological characteristics revealed that overexpression of Nedd4-1 is tightly associated with TNM stage (p < 0.001). Knockdown of Nedd4-1 in gastric cancer cell lines AGS and N87 dramatically inhibited the gastric cancer cell migration and invasion.ConclusionsOur results indicate that Nedd4-1 is an exceptional prognostic biomarker for GCA and suggest that Nedd4-1 may play an essential role in GCA metastasis.


Biochemical Journal | 2012

The activation mechanism of ACK1 (activated Cdc42-associated tyrosine kinase 1)

Qiong Lin; Jian Wang; Chandra Childress; Wannian Yang

ACK [activated Cdc42 (cell division cycle 42)-associated tyrosine kinase; also called TNK2 (tyrosine kinase, non-receptor, 2)] is activated in response to multiple cellular signals, including cell adhesion, growth factor receptors and heterotrimeric G-protein-coupled receptor signalling. However, the molecular mechanism underlying activation of ACK remains largely unclear. In the present study, we demonstrated that interaction of the SH3 (Src homology 3) domain with the EBD [EGFR (epidermal growth factor receptor)-binding domain] in ACK1 forms an auto-inhibition of the kinase activity. Release of this auto-inhibition is a key step for activation of ACK1. Mutation of the SH3 domain caused activation of ACK1, independent of cell adhesion, suggesting that cell adhesion-mediated activation of ACK1 is through releasing the auto-inhibition. A region at the N-terminus of ACK1 (Leu10-Leu14) is essential for cell adhesion-mediated activation. In the activation of ACK1 by EGFR signalling, Grb2 (growth-factor-receptor-bound protein 2) mediates the interaction of ACK1 with EGFR through binding to the EBD and activates ACK1 by releasing the auto-inhibition. Furthermore, we found that mutation of Ser445 to proline caused constitutive activation of ACK1. Taken together, our studies have revealed a novel molecular mechanism underlying activation of ACK1.


Scientific Reports | 2015

Lysine-specific demethylase 1 mediates epidermal growth factor signaling to promote cell migration in ovarian cancer cells

Genbao Shao; Jie Wang; Yuanxia Li; Xiuwen Liu; Xiaodong Xie; Xiaolei Wan; Meina Yan; Jie Jin; Qiong Lin; Haitao Zhu; Liuping Zhang; Aihua Gong; Qixiang Shao; Chaoyang Wu

Epigenetic abnormalities play a vital role in the progression of ovarian cancer. Lysine-specific demethylase 1 (LSD1/KDM1A) acts as an epigenetic regulator and is overexpressed in ovarian tumors. However, the upstream regulator of LSD1 expression in this cancer remains elusive. Here, we show that epidermal growth factor (EGF) signaling upregulates LSD1 protein levels in SKOV3 and HO8910 ovarian cancer cells overexpressing both LSD1 and the EGF receptor. This effect is correlated with a decrease in the dimethylation of H3K4, a major substrate of LSD1, in an LSD1-dependent manner. We also show that inhibition of PI3K/AKT, but not MEK, abolishes the EGF-induced upregulation of LSD1 and cell migration, indicating that the PI3K/PDK1/AKT pathway mediates the EGF-induced expression of LSD1 and cell migration. Significantly, LSD1 knockdown or inhibition of LSD1 activity impairs both intrinsic and EGF-induced cell migration in SKOV3 and HO8910 cells. These results highlight a novel mechanism regulating LSD1 expression and identify LSD1 as a promising therapeutic target for treating metastatic ovarian cancer driven by EGF signaling.


Cancer Cell International | 2015

PBK/TOPK mediates geranylgeranylation signaling for breast cancer cell proliferation.

Xiaoyan Dou; Jing Wei; Aiqin Sun; Genbao Shao; Chandra Childress; Wannian Yang; Qiong Lin

PDZ binding-kinase (PBK) (also named T-lymphokine-activated killer cell-originated protein kinase (TOPK)), a serine/threonine kinase, is tightly controlled in normal tissues but elevated in many tumors, and functions in tumorigenesis and metastasis. However, the signaling that regulates expression of PBK in cancer cells remains elusive. Here we show that atorvastatin (Lipitor), an inhibitor of hydroxymethylglutaryl co-enzyme A (HMG-CoA) reductase that is a rate-limiting enzyme of mevalonate pathway, down-regulates expression of PBK by impairing protein geranylgeranylation. The shRNA knockdown demonstrated that Yes-associated protein (YAP) mediates geranylgeranylation-regulated expression of PBK. Importantly, atorvastatin or the geranylgeranyltransferase I inhibitor GGTI-298 inhibited breast cancer cell proliferation through inactivation of YAP signaling and down-regulation of PBK. These findings have defined a new signaling pathway that regulated expression of PBK and identified PBK as a downstream target of the Hippo-YAP signaling, uncoverd a mechanism underlying the anti-cancer effect by inhibition of mevalonate pathway and geranylgeranylation, and provided a potential target for breast cancer targeted therapy.


Journal of Cell Science | 2017

The HECT E3 ubiquitin ligase NEDD4 interacts with and ubiquitylates SQSTM1 for inclusion body autophagy

Qiong Lin; Qian Dai; Hongxia Meng; Aiqin Sun; Jing Wei; Ke Peng; Chandra Childress; Miao Chen; Genbao Shao; Wannian Yang

ABSTRACT Our previous studies have shown that the HECT E3 ubiquitin ligase NEDD4 interacts with LC3 and is required for starvation and rapamycin-induced activation of autophagy. Here, we report that NEDD4 directly binds to SQSTM1 via its HECT domain and polyubiquitylates SQSTM1. This ubiquitylation is through K63 conjugation and is not involved in proteasomal degradation. Mutational analysis indicates that NEDD4 interacts with and ubiquitylates the PB1 domain of SQSTM1. Depletion of NEDD4 or overexpression of the ligase-defective mutant of NEDD4 induced accumulation of aberrant enlarged SQSTM1-positive inclusion bodies that are co-localized with the endoplasmic reticulum (ER) marker CANX, suggesting that the ubiquitylation functions in the SQSTM1-mediated biogenic process in inclusion body autophagosomes. Taken together, our studies show that NEDD4 is an autophagic E3 ubiquitin ligase that ubiquitylates SQSTM1, facilitating SQSTM1-mediated inclusion body autophagy. Highlighted Article: NEDD4 is an autophagic HECT E3 ubiquitin ligase that ubiquitylates the autophagy receptor SQSTM1, facilitating inclusion body autophagy.


Oncotarget | 2016

CYR61 (CCN1) is a metastatic biomarker of gastric cardia adenocarcinoma

Jing Wei; Guanzhen Yu; Genbao Shao; Aiqin Sun; Miao Chen; Wannian Yang; Qiong Lin

Gastric cardia adenocarcinoma (GCA) is the most aggressive subtype of gastric cancer with a high metastatic rate. In this report, we collected tumor tissue samples from 214 GCA cases and examined expression of CYR61, a target gene product of the Hippo-YAP/TAZ pathway, in the GCA tumors by immunohistochemical (IHC) staining using the tissue microarray assay (TMA). The results have shown that CYR61 is overexpressed in 44% of the GCA tumor samples. Expression of CYR61 is inversely correlated with cumulative survival of GCA patients (p<0.001) and significantly associated only with metastatic pathological categories (with N category, p=0.052; with TNM stage, p=0.001). Furthermore, knockdown of CYR61 in gastric cancer AGS cells impairs the cancer cell migration and invasion, suggesting a driver role of CYR61 in metastasis. Thus, our studies have established CYR61 as a metastatic biomarker for prediction of poor prognosis of GCA and provided a potential molecular target for anti-metastatic therapy of GCA.


Cancer Cell International | 2016

Stress-induced endocytosis and degradation of epidermal growth factor receptor are two independent processes

Ke Peng; Qian Dai; Jing Wei; Genbao Shao; Aiqin Sun; Wannian Yang; Qiong Lin

BackgroundEpidermal growth factor receptor (EGFR) is an important oncogenic protein in multiple types of cancer. Endocytosis and degradation of epidermal growth factor receptor (EGFR) are two key steps for down-regulation of cell surface level of EGFR and modulation of EGFR signaling. Stress conditions induce ligand-independent endocytosis and degradation of EGFR. However, it is not clear whether stress-induced endocytosis and degradation are consequential or two independent events.MethodsEndocytosis and degradation of EGFR in response to stress treatment and effects of the p38 inhibitor, the Caspase-3 inhibitor and the proteasomal inhibitor in cervical cancer HeLa cells were determined using immunoblotting and immunofluorescent staining assays.ResultsStress conditions, such as protein biosynthesis inhibition, UV light irradiation, and hyper-osmosis, induced both ligand-independent endocytosis and degradation of EGFR. Stress-induced endocytosis of EGFR relies on p38 kinase activity, while stress-induced degradation of EGFR is catalyzed by Caspase-3 activity. Inhibiting p38 kinase impairs only the endocytosis but not the degradation, while inhibiting Caspase-3 results in the opposite effect to inhibiting p38. Furthermore, proteasomal activity is required for stress-induced degradation of EGFR and cell death, but not for endocytosis.ConclusionsThe results indicate that stress-induced endocytosis and degradation are two independent events and suggest stress signaling may utilize a double-secure mechanism to down-regulate cell surface EGFR in cancer cells.


Oncology Letters | 2018

Inhibition of lysine‑specific demethylase 1 prevents proliferation and mediates cisplatin sensitivity in ovarian cancer cells

Genbao Shao; Xiaolei Wan; Wensheng Lai; Chaoyang Wu; Jie Jin; Xiuwen Liu; Ye Wei; Qiong Lin; Liuping Zhang; Qixiang Shao

Lysine-specific demethylase 1 (LSD1) functions as a transcriptional coregulator by modulating histone methylation and has been associated with numerous high-risk cancers. Previously, our group and others identified LSD1 as an upregulated gene in ovarian cancer, and reported that the upregulation of LSD1 was associated with poor prognosis of patients with ovarian cancer. However, the role of LSD1 in ovarian cancer requires further investigation. The present study revealed that the overexpression of LSD1 significantly promoted the proliferation of SKOV3 ovarian cancer cells, while knockdown of LSD1 markedly inhibited cell proliferation and potentiated cisplatin-induced cell apoptosis, supporting LSD1 as an oncogenic protein in ovarian cancer. Mechanistic studies have indicated that LSD1 modulates the expression of cyclin dependent kinase inhibitor 1, Survivin, B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X genes, which are known regulators of cell proliferation. Furthermore, LSD1 knockdown plus cisplatin synergistically impaired cell migration via the induction of the epithelial marker E-cadherin and inhibition of the mesenchymal markers, snail family transcriptional repressor 1 and Vimentin. These data of the present study indicated LSD1 as a potential regulator of ovarian cancer cell progression and suggested an unfavorable role of LSD1 in cisplatin-based regimens.


Molecular Cancer | 2018

The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells

Genbao Shao; Ranran Wang; Aiqin Sun; Jing Wei; Ke Peng; Qian Dai; Wannian Yang; Qiong Lin

BackgroundEGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling.MethodsLentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration.ResultsKnockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4 significantly reduced extracellular amount of cathepsin B induced by EGF. Consistent with the role of NEDD4, cathepsin B is pivotal for both basal and the EGF-stimulated lung cancer cell migration. Our studies propose a novel mechanism underlying the EGFR-promoted lung cancer cell migration that is mediated by NEDD4 through regulation of cathepsin B secretion.ConclusionNEDD4 mediates the EGFR lung cancer cell migration signaling through promoting lysosomal secretion of cathepsin B.

Collaboration


Dive into the Qiong Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wannian Yang

Geisinger Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge