Qisheng Tu
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qisheng Tu.
Journal of Cellular Physiology | 2011
Xuejing Duan; Qisheng Tu; Jin Zhang; Jinhai Ye; Cesar A. Sommer; Gustavo Mostoslavsky; David L. Kaplan; Pishan Yang; Jake Chen
Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was, for the first time, to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined, and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC, Osx, and Runx2 genes, both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group, histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament. J. Cell. Physiol. 226: 150–157, 2010.
Biomaterials | 2011
Jinhai Ye; Yuan-Jin Xu; Jun Gao; Shi-Guo Yan; Jun Zhao; Qisheng Tu; Jin Zhang; Xuejing Duan; Cesar A. Sommer; Gustavo Mostoslavsky; David L. Kaplan; Yu-Nong Wu; Chen-Ping Zhang; Lin Wang; Jake Chen
Induced pluripotent stem cells (iPSCs) can differentiate into mineralizing cells and thus have a great potential in application in engineered bone substitutes with bioactive scaffolds in regeneration medicine. In the current study we characterized and demonstrated the pluripotency and osteogenic differentiation of mouse iPSCs. To enhance the osteogenic differentiation of iPSCs, we then transduced the iPSCs with the potent transcription factor, nuclear matrix protein SATB2. We observed that in SATB2-overexpressing iPSCs there were increased mineral nodule formation and elevated mRNA levels of key osteogenic genes, osterix (OSX), Runx2, bone sialoprotein (BSP) and osteocalcin (OCN). Moreover, the mRNA levels of HoxA2 was reduced after SATB2 overexpression in iPSCs. The SATB2-overexpressing iPSCs were then combined with silk scaffolds and transplanted into critical-size calvarial bone defects created in nude mice. Five weeks post-surgery, radiological and micro-CT analysis revealed enhanced new bone formation in calvarial defects in SATB2 group. Histological analysis also showed increased new bone formation and mineralization in the SATB2 group. In conclusion, the results demonstrate that SATB2 facilitates the differentiation of iPSCs towards osteoblast-lineage cells by repressing HoxA2 and augmenting the functions of the osteoblast determinants Runx2, BSP and OCN.
Journal of Biological Chemistry | 2011
Qisheng Tu; Jin Zhang; Lily Q. Dong; Eileen Saunders; En Luo; Jean Tang; Jake Chen
Adiponectin is an adipokine playing an important role in regulating energy homeostasis and insulin sensitivity. However, the effect of adiponectin on bone metabolism shows contradictory results according to different research studies. In this study femurs were isolated from genetically double-labeled mBSP9.0Luc/β-ACT-EGFP transgenic mice and were transplanted into adiponectin knock-out mice or wild type mice to investigate the effect of temporary exposure to adiponectin deficiency on bone growth and metabolism. We found that the growth of bone explants in adiponectin knock-out mice was significantly retarded. Histological analysis, microcomputed tomography analysis, and tartrate-resistant acid phosphatase staining revealed reduced trabecular bone volume, decreased cortical bone, and increased osteoclast number in bone explants in adiponectin knock-out mice. We then found that adiponectin inhibits RANKL-induced osteoclastogenesis from RAW264.7 cells and down-regulates RANKL-enhanced expressions of osteoclastogenic regulators including NFAT2, TRAF6, cathepsin K, and tartrate-resistant acid phosphatase. Adiponectin also increases osteoclast apoptosis and decreases survival/proliferation of osteoclast precursor cells. Using siRNA specifically targeting APPL1, the first identified adaptor protein of adiponectin signaling, we found that the inhibitory effect of adiponectin on osteoclasts was induced by APPL1-mediated down-regulation of Akt1 activity. In addition, overexpression of Akt1 successfully reversed adiponectin-induced inhibition in RANKL-stimulated osteoclast differentiation. In conclusion, adiponectin is important in maintaining the balance of energy metabolism, inflammatory responses, and bone formation.
Journal of Bone and Mineral Research | 2005
Paloma Valverde; Qisheng Tu; Jake Chen
RANKL and BSP are upregulated in several bone resorptive disorders. However, the mechanisms by which these two factors might induce osteoclastogenesis and bone resorption synergistically under pathological conditions remain largely unknown.
Journal of Dental Research | 2014
Shu Meng; Lan Zhang; Yin Tang; Qisheng Tu; Leilei Zheng; Liming Yu; Dana Murray; Jessica Cheng; Sung Hoon Kim; Xuedong Zhou; Jake Chen
BET proteins are a group of epigenetic regulators controlling transcription through reading acetylated histone tails and recruiting transcription complexes. They are considered as potential therapeutic targets in many distinct diseases. A novel synthetic bromodomain and extraterminal domain (BET) inhibitor, JQ1, was proved to suppress oncogene transcription and inflammatory responses. The present study was aimed to investigate the effects of JQ1 on inflammatory response and bone destruction in experimental periodontitis. We found that JQ1 significantly suppressed lipopolysaccharide (LPS)-stimulated inflammatory cytokine transcription, including interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), as well as receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast markers, such as c-Fos, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP) and cathepsin K in vitro. JQ1 also inhibited toll-like receptors 2/4 (TLR2/4) expression and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Chromatin immunoprecipitation and quantitative polymerase chain reaction (ChIP-qPCR) revealed that JQ1 neutralized BRD4 enrichment at several gene promoter regions, including NF-κB, TNF-α, c-Fos, and NFATc1. In a murine periodontitis model, systemic administration of JQ1 significantly inhibited inflammatory cytokine expression in diseased gingival tissues. Alveolar bone loss was alleviated in JQ1-treated mice because of reduced osteoclasts in periodontal tissues. These unprecedented results suggest the BET inhibitor JQ1 as a prospective new approach for treating periodontitis.
Journal of Bone and Mineral Research | 2008
Paloma Valverde; Jin Zhang; Amanda Fix; Ji Zhu; Wenli Ma; Qisheng Tu; Jake Chen
The purpose of this study was to determine the effects of bone sialoprotein (BSP) overexpression in bone metabolism in vivo by using a homozygous transgenic mouse line that constitutively overexpresses mouse BSP cDNA driven by the cytomegalovirus (CMV) promoter. CMV‐BSP transgenic (TG) mice and wildtype mice were weighed, and their length, BMD, and trabecular bone volume were measured. Serum levels of RANKL, osteocalcin, osteoprotegerin (OPG), TRACP5b, and PTH were determined. Bone histomorphometry, von Kossa staining, RT‐PCR analysis, Western blot, MTS assay, in vitro mineralization assay, and TRACP staining were also performed to delineate phenotypes of this transgenic mouse line. Compared with wildtype mice, adult TG mice exhibit mild dwarfism, lower values of BMD, and lower trabecular bone volume. TG mice serum contained increased calcium levels and decreased PTH levels, whereas the levels of phosphorus and magnesium were within normal limits. TG mice serum also exhibited lower levels of osteoblast differentiation markers and higher levels of markers, indicating osteoclastic activity and bone resorption. H&E staining, TRACP staining, and bone histomorphometry showed that adult TG bones were thinner and the number of giant osteoclasts in TG mice was higher, whereas there were no significant alterations in osteoblast numbers between TG mice and WT mice. Furthermore, the vertical length of the hypertrophic zone in TG mice was slightly enlarged. Moreover, ex vivo experiments indicated that overexpression of BSP decreased osteoblast population and increased osteoclastic activity. Partly because of its effects in enhancing osteoclastic activity and decreasing osteoblast population, BSP overexpression leads to an uncoupling of bone formation and resorption, which in turn results in osteopenia and mild dwarfism in mice. These findings are expected to help the development of therapies to metabolic bone diseases characterized by high serum level of BSP.
European Journal of Oral Sciences | 2008
Yanhong Zhao; Chunling Wang; Shu Li; Hui Song; Fulan Wei; Keqing Pan; Kun Zhu; Pishan Yang; Qisheng Tu; Jake Chen
Osterix (Osx) is an osteoblast-specific transcription factor required for the differentiation of pre-osteoblasts into functional osteoblasts. This study sought to examine the changes of Osx expression in periodontal ligament cells (PDLC) subjected to mechanical force, and to investigate whether Osx is involved in the mechanical stress-induced differentiation of PDLC. Human PDLC were exposed to centrifugal force for 1-12 h. Real-time polymerase chain reaction (PCR), western blot, and immunofluorescence assays were used to examine the mRNA and protein expression of Osx and its subcellular localization. Furthermore, PDLC were transfected with the expression vector pcDNA3.1 flag-Osx and subjected to mechanical force for 6 h. The changes in alkaline phosphatase (ALP) activity and in the expression of core-binding factor alpha1 (Cbfa1), ALP, osteopontin, bone sialoprotein, osteocalcin, and collagen I were measured. After the application of mechanical force, Osx was upregulated in a time-dependent manner at both mRNA and protein levels, and Osx protein was translocated from the cytosol into the cell nuclei. Overexpression of Osx did not affect the expression of Cbfa1, but it significantly enhanced the ALP activity and the mRNA expression of all the aforementioned osteogenic marker genes, all of which increased further under mechanical stress. These results suggest that Osx might play an important role in the mechanical stress-induced osteogenic differentiation of PDLC and therefore be involved in alveolar bone remodeling during orthodontic therapy.
Journal of Dental Research | 2009
B. Xu; Jin Zhang; E. Brewer; Qisheng Tu; Lei Yu; Jean Tang; Paul H. Krebsbach; M. Wieland; Jake Chen
Cellular and molecular events in osseointegration at the dental implant surface remain largely unknown. We hypothesized that bone marrow stromal cells (BMSCs) participate in this process, and that osterix (Osx) promotes implant osseointegration. To prove this hypothesis, we tracked double-labeled BMSCs in implantation sites created in nude mice transplanted with these cells. We also inserted implants into the femurs of our established transgenic mice after local administration of viruses encoding Osx, to determine the osteogenic effects of Osx. Immunohistochemical results demonstrated that BMSCs can recruit from peripheral circulation and participate in wound healing and osseointegration after implantation. Microcomputed tomography (microCT) analysis revealed an increased bone density at the bone-to-implant interface in the Osx group, and histomorphometric analysis indicated an elevated level of bone-to-implant contact in the Osx group. We concluded that exogenous BMSCs participate in the osseointegration after implantation, and that Osx overexpression accelerates osseointegration.
Stem Cells | 2015
Liming Yu; Qisheng Tu; Qianqian Han; Lan Zhang; Lei Sui; Leilei Zheng; Shu Meng; Yin Tang; Dongying Xuan; Jin Zhang; Dana Murray; Qingping Shen; Jessica Cheng; Sung Hoon Kim; Lily Q. Dong; Paloma Valverde; Xinming Cao; Jake Chen
Adiponectin (APN) is an adipocyte‐secreted adipokine that exerts well‐characterized antidiabetic properties. Patients with type 2 diabetes (T2D) are characterized by reduced APN levels in circulation and impaired stem cell and progenitor cell mobilization from the bone marrow for tissue repair and remodeling. In this study, we found that APN regulates the mobilization and recruitment of bone marrow‐derived mesenchymal stem cells (BMSCs) to participate in tissue repair and regeneration. APN facilitated BMSCs migrating from the bone marrow into the circulation to regenerate bone by regulating stromal cell‐derived factor (SDF)−1 in a mouse bone defect model. More importantly, we found that systemic APN infusion ameliorated diabetic mobilopathy of BMSCs, lowered glucose concentration, and promoted bone regeneration in diet‐induced obesity mice. In vitro studies allowed us to identify Smad1/5/8 as a novel signaling mediator of APN receptor (AdipoR)−1 in BMSCs and osteoblasts. APN stimulation of MC3T3‐E1 osteoblastic cells led to Smad1/5/8 phosphorylation and nuclear localization and increased SDF‐1 mRNA expression. Although APN‐mediated phosphorylation of Smad1/5/8 occurred independently from adaptor protein, phosphotyrosine interaction, pleckstrin homology domain, and leucine zipper containing 1, it correlated with the disassembly of protein kinase casein kinase 2 and AdipoR1 in immunoprecipitation experiments. Taken together, this study identified APN as a regulator of BMSCs migration in response to bone injury. Therefore, our findings suggest APN signaling could be a potential therapeutic target to improve bone regeneration and homeostasis, especially in obese and T2D patients. Stem Cells 2015;33:240–252
American Journal of Physiology-endocrinology and Metabolism | 2014
Yuwei Wu; Qisheng Tu; Paloma Valverde; Jin Zhang; Dana Murray; Lily Q. Dong; Jessica Cheng; Hua Jiang; Maribel Rios; Elise F. Morgan; Zhihui Tang; Jake Chen
Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC.