Qiufen Jiang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qiufen Jiang.
PLOS ONE | 2013
Qiufen Jiang; Zhi Zhou; Leilei Wang; Lingling Wang; Feng Yue; Jingjing Wang; Linsheng Song
Background Nitric oxide synthase (NOS) is responsible for synthesizing nitric oxide (NO) from L-arginine, and involved in multiple physiological functions. However, its immunological role in mollusc was seldom reported. Methodology In the present study, an NOS (CfNOS) gene was identified from the scallop Chlamys farreri encoding a polypeptide of 1486 amino acids. Its amino acid sequence shared 50.0~54.7, 40.7~47.0 and 42.5~44.5% similarities with vertebrate neuronal (n), endothelial (e) and inducible (i) NOSs, respectively. CfNOS contained PDZ, oxygenase and reductase domains, which resembled those in nNOS. The CfNOS mRNA transcripts expressed in all embryos and larvae after the 2-cell embryo stage, and were detectable in all tested tissues with the highest level in the gonad, and with the immune tissues hepatopancreas and haemocytes included. Moreover, the immunoreactive area of CfNOS distributed over the haemocyte cytoplasm and cell membrane. After LPS, β-glucan and PGN stimulation, the expression level of CfNOS mRNA in haemocytes increased significantly at 3 h (4.0-, 4.8- and 2.7-fold, respectively, P < 0.01), and reached the peak at 12 h (15.3- and 27.6-fold for LPS and β-glucan respectively, P < 0.01) and 24 h (17.3-fold for PGN, P < 0.01). In addition, TNF-α also induced the expression of CfNOS, which started to increase at 1 h (5.2-fold, P < 0.05) and peaked at 6 h (19.9-fold, P < 0.01). The catalytic activity of the native CfNOS protein was 30.3 ± 0.3 U mgprot-1, and it decreased significantly after the addition of the selective inhibitors of nNOS and iNOS (26.9 ± 0.4 and 29.3 ± 0.1 U mgprot-1, respectively, P < 0.01). Conclusions These results suggested that CfNOS, with identical structure with nNOS and similar enzymatic characteristics to nNOS and iNOS, played the immunological role of iNOS to be involved in the scallop immune defense against PAMPs and TNF-α.
Fish & Shellfish Immunology | 2013
Qiufen Jiang; Zhi Zhou; Lingling Wang; Xiaowei Shi; Jingjing Wang; Feng Yue; Qilin Yi; Chuanyan Yang; Linsheng Song
Nitric oxide (NO) is an important signalling molecule which plays an indispensable role in immunity of all vertebrates and invertebrates. In the present study, the immunomodulation of inducible NO in scallop Chlamys farreri was examined by monitoring the alterations of haemocyte behaviours and related immune molecules in response to the stimulations of LPS and/or with S-Methylisothiourea Sulphate (SMT), an inhibitor of inducible NO synthase (NOS). The total activity of NOS and NO concentration in the haemolymph of scallop C. farreri increased significantly at 3, 6 and 12 h after LPS stimulation respectively, whereas their increases were fully repressed when scallops were treated in the collaborating of LPS and SMT. Meanwhile, some cellular and humoral immune parameters were determined after the stimulation of LPS and SMT to investigate the role of inducible NO in innate immunity of scallop. After LPS stimulation, the highest levels of haemocytes apoptosis and phagocytosis were observed at 24 h (38.5 ± 2.5%, P < 0.01) and 12 h (38.6 ± 0.2%, P < 0.01), respectively, and the reactive oxygen species (ROS) level (5.88 ± 0.90%, P < 0.01) of haemocytes and anti-bacterial activity of haemolymph (10.0 ± 2.2%, P < 0.01) all elevated dramatically at 12 h. Although the activity of lysozyme and phenoloxidase (PO) in haemolymph both declined at 48 h (93.0 ± 6.3 U mgprot(-1), 0.40 ± 0.06 U mgprot(-1), P < 0.01), superoxide dismutase (SOD) activity and GSH concentration both increased to the highest level at 24 h post treatment (99.2 ± 8.1 U mgprot(-1), 93.0 ± 6.3 nmol mgprot(-1), P < 0.01). After the collaborating treatment of LPS and SMT, the apoptosis index increased much higher from 48 h, while the increase of haemocytes phagocytosis, ROS level and haemolymph anti-bacteria activities were suppressed completely at 12 h. The declines of lysozyme and PO activity in haemolymph were reversed at 48 h, and the rise of SOD activity and GSH concentration started earlier from 3 h. These results indicated clearly that NO could participate in the scallop immunity and play a crucial role in the modulation of immune response including haemocytes apoptosis and phagocytosis, anti-bacterial activity and redox homeostasis in the haemolymph of scallop.
Scientific Reports | 2015
Qiufen Jiang; Zhi Zhou; Lingling Wang; Chuanyan Yang; Jingjing Wang; Tiantian Wu; Linsheng Song
Nitric oxide (NO) is one of the most important immune molecules in innate immunity of invertebrates, and it can be regulated by norepinephrine in ascidian haemocytes. In the present study, the mutual modulation and underlying mechanism between norepinephrine and NO were explored in haemocytes of the scallop Chlamys farreri. After lipopolysaccharide stimulation, NO production increased to a significant level at 24 h, and norepinephrine concentration rose to remarkable levels at 3 h and 12~48 h. A significant decrease of NO production was observed in the haemocytes concomitantly stimulated with lipopolysaccharide and α-adrenoceptor agonist, while a dramatic increase of NO production was observed in the haemocytes incubated with lipopolysaccharide and β-adrenoceptor agonist. Meanwhile, the concentration of cyclic adenosine monophosphate (cAMP) decreased significantly in the haemocytes treated by lipopolysaccharide and α/β-adrenoceptor agonist, while the content of Ca2+ was elevated in those triggered by lipopolysaccharide and β-adrenoceptor agonist. When the haemocytes was incubated with NO donor, norepinephrine concentration was significantly enhanced during 1~24 h. Collectively, these results suggested that norepinephrine exerted varied effects on NO production at different immune stages via a novel α/β-adrenoceptor-cAMP/Ca2+ regulatory pattern, and NO might have a feedback effect on the synthesis of norepinephrine in the scallop haemocytes.
PLOS ONE | 2012
Chuanyan Yang; Lingling Wang; Vinu S. Siva; Xiaowei Shi; Qiufen Jiang; Jingjing Wang; Huan Zhang; Linsheng Song
Background The cold shock domain (CSD) containing proteins (CSDPs) are one group of the evolutionarily conserved nucleic acid-binding proteins widely distributed in bacteria, plants, animals, and involved in various cellular processes, including adaptation to low temperature, cellular growth, nutrient stress and stationary phase. Methodology The cDNA of a novel CSDP was cloned from Zhikong scallop Chlamys farreri (designated as CfCSP) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full length cDNA of CfCSP was of 1735 bp containing a 927 bp open reading frame which encoded an N-terminal CSD with conserved nucleic acids binding motif and a C-terminal domain with four Arg-Gly-Gly (RGG) repeats. The CSD of CfCSP shared high homology with the CSDs from other CSDPs in vertebrate, invertebrate and bacteria. The mRNA transcripts of CfCSP were mainly detected in the tissue of adductor and also marginally detectable in gill, hepatopancreas, hemocytes, kidney, mantle and gonad of healthy scallop. The relative expression level of CfCSP was up-regulated significantly in adductor and hemocytes at 1 h and 24 h respectively after low temperature treatment (P<0.05). The recombinant CfCSP protein (rCfCSP) could bind ssDNA and in vitro transcribed mRNA, but it could not bind dsDNA. BX04, a cold sensitive Escherichia coli CSP quadruple-deletion mutant, was used to examine the cold adaptation ability of CfCSP. After incubation at 17°C for 120 h, the strain of BX04 containing the vector pINIII showed growth defect and failed to form colonies, while strain containing pINIII-CSPA or pINIII-CfCSP grew vigorously, indicating that CfCSP shared a similar function with E. coli CSPs for the cold adaptation. Conclusions These results suggest that CfCSP is a novel eukaryotic cold-regulated nucleic acid-binding protein and may function as an RNA chaperone in vivo during the cold adaptation process.
Gene | 2013
Chuanyan Yang; Lingling Wang; Qiufen Jiang; Jingjing Wang; Feng Yue; Huan Zhang; Zhibin Sun; Linsheng Song
Metallothioneins (MTs), a superfamily of cysteine-rich proteins, perform multiple functions, such as maintaining homeostasis of essential metals, detoxification of toxic metals and scavenging of oxyradicals. In this study, the promoter region of a metallothionein (MT) gene from Bay scallop Argopecten irradians (designed as AiMT1) was cloned by the technique of genomic DNA walking, and the polymorphisms in this region were screened to find their association with susceptibility or tolerance to high temperature stress. One insert-deletion (ins-del) polymorphism and sixteen single nucleotide polymorphisms (SNPs) were identified in the amplified promoter region. Two SNPs, -375 T-C and -337 A-C, were selected to analyze their distribution in the two Bay scallop populations collected from southern and northern China coast, which were identified as heat resistant and heat susceptible stocks, respectively. There were three genotypes, T/T, T/C and C/C, at locus -375, and their frequencies were 25%, 61.1% and 13.9% in the heat susceptible stock, while 34.2%, 42.1% and 23.7% in the resistant stock, respectively. There was no significant difference in the frequency distribution of different genotypes between the two stocks (P>0.05). In contrast, at locus -337, three genotypes A/A, A/C and C/C were revealed with the frequencies of 11.6%, 34.9% and 53.5% in the heat susceptible stock, while 45.7%, 32.6% and 21.7% in the heat resistant stock, respectively. The frequency of C/C genotype in the heat susceptible stock was significantly higher (P<0.01) than that in the heat resistant stock, while the frequency of A/A in the heat resistant stock was significantly higher (P<0.01) than that in the heat susceptible stock. Furthermore, the expression of AiMT1 mRNA in scallops with C/C genotype was significantly higher than that with A/A genotype (P<0.05) after an acute heat treatment at 28°C for 120min. These results implied that the polymorphism at locus -337 of AiMT1 was associated with the susceptibility/tolerance of scallops to heat stress, and the -337 A/A genotype could be a potential marker available in future selection of Bay scallop with heat tolerance.
Developmental and Comparative Immunology | 2015
Leilei Wang; Lingling Wang; Daoxiang Zhang; Qiufen Jiang; Rui Sun; Hao Wang; Huan Zhang; Linsheng Song
The C1q domain containing (C1qDC) proteins are a family of proteins possessing globular C1q (gC1q) domains, and they rely on this domain to recognize various ligands such as PAMPs, immunoglobulins, ligands on apoptotic cell. In the present study, a novel multi-domain C1qDC protein (CfC1qDC-2) was identified from scallop Chlamys farreri, and its full length cDNA was composed of 1648 bp, encoding a signal peptide and three typical gC1q domains. BLAST analysis revealed significant sequence similarity between CfC1qDC-2 and C1qDC proteins from mollusks. Three gC1q domains were predicted in its tertiary structure to form a tightly packed bell-shaped trimer, and each one adopted a typical 10-stranded sandwich fold with a jelly-roll topology and contained six aromatic amino acids forming the hydrophobic core. The mRNA transcripts of CfC1qDC-2 were mainly detected in the tissues of hepatopancreas and gonad of adult scallops, and the expression level was up-regulated in hemocytes after stimulated by LPS, PGN and β-glucan. During the embryonic development of scallop, the mRNA transcripts of CfC1qDC-2 were presented in all the detected stages, and the expression level was up-regulated from D-hinged larvae and reached the highest at eye-spot larvae. The recombinant protein of MBP-CfC1qDC-2 (rCfC1qDC-2) could bind various PAMPs including LPS, PGN, LTA, β-glucan, mannan as well as polyI:C, and different microorganisms including three Gram-negative bacteria, three Gram-positive bacteria and two yeasts, as well as scallop apoptotic cells. Meanwhile, rCfC1qDC-2 could interact with human heat-aggregated IgG and IgM, and inhibit the C1q-dependent hemolysis of rabbit serum. All these results indicated that CfC1qDC-2 could recognize not only PAMPs as a PRR, but also the apoptotic cells. Moreover, the similar structures and functions shared by CfC1qDC-2 and complement C1q provided a new insight into the evolution of C1qDC proteins in complement system.
Developmental and Comparative Immunology | 2014
Feng Yue; Zhi Zhou; Lingling Wang; Rui Sun; Qiufen Jiang; Qilin Yi; Tao Zhang; Linsheng Song
Core binding factor (CBF) is a family of heterodimeric transcription factors composed of a DNA-binding CBFα subunit and a non-DNA-binding CBFβ subunit, which plays critical roles in regulating hematopoiesis, osteogenesis and neurogenesis. In the present study, two genes encoding Runt (designed as CfRunt) and CBFβ (designed as CfCBFβ) were cloned and characterized from scallop Chlamys farreri. The full-length cDNA of CfRunt and CfCBFβ consists of 2128 bp and 1729 bp encoding a predicted polypeptide of 530 and 183 amino acids with a conserved Runt domain and CBFβ domain, respectively. Electrophoretic mobility shift assay demonstrated that the recombinant CfRunt protein (rCfRunt) exhibited solid ability to bind specific DNA, whereas rCfCBFβ could remarkably increase the DNA-binding affinity of rCfRunt. The mRNA transcripts of CfRunt and CfCBFβ could be detected in all tested tissues, especially in hemocytes, heart, hepatopancreas or muscle. After bacterial challenge, the circulating total hemocyte count (THC) of scallop reduced to the lowest level at 6h (P<0.05), and then it recovered gradually to the control level at 48-96 h, while the mRNA expressions of CfRunt and CfCBFβ were significant up-regulated between 6 and 48 h (P<0.05). After CfRunt gene was silenced by RNA interference, the hemocyte renewal rate and circulating THC both decreased significantly (P<0.05). However, following the RNA interference of CfRunt, the mRNA expression of CfRunt was significantly induced (P<0.05) and the attenuated hemocyte renewal rate and circulating THC could be repaired partially by LPS stimulation in the CfRunt-silenced scallops. The results collectively indicated that CfRunt and CfCBFβ, as conserved transcription factors, played essential roles in regulating hemocyte production of scallop.
Open Biology | 2017
Zhaoqun Liu; Zhi Zhou; Qiufen Jiang; Lingling Wang; Qilin Yi; Limei Qiu; Linsheng Song
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas. Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca2+. This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the ‘nervous-haemocyte’ NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network.
PLOS ONE | 2014
Chuanyan Yang; Lingling Wang; Jingjing Wang; Qiufen Jiang; Limei Qiu; Huan Zhang; Linsheng Song
Background The heat shock protein 70 (HSP70) is one kind of molecular chaperones, which plays a key role in protein metabolism under normal and stress conditions. Methodology In the present study, the mRNA expressions of HSP70 under normal physiological condition and after acute heat stress were investigated in gills of two bay scallop populations (Argopecten irradians irradians and A. i. concentricus). The heat resistant scallops A. i. concentricus showed significantly lower basal level and higher induction of HSP70 compared with that of the heat sensitive scallops A. i. irradians. The promoter sequence of HSP70 gene from bay scallop (AiHSP70) was cloned and the polymorphisms within this region were investigated to analyze their association with heat tolerance. Totally 11 single nucleotide polymorphisms (SNPs) were identified, and four of them (−967, −480, −408 and −83) were associated with heat tolerance after HWE analysis and association analysis. Based on the result of linkage disequilibrium analysis, the in vitro transcriptional activities of AiHSP70 promoters with different genotype were further determined, and the results showed that promoter from A. i. concentricus exhibited higher transcriptional activity than that from A. i. irradians (P<0.05). Conclusions The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP70. Meanwhile, the −967 GG, −480 AA, −408 TT and −83 AG genotypes could be potential markers for scallop selection breeding with higher heat tolerance.
Fish & Shellfish Immunology | 2014
Zhibin Sun; Qiufen Jiang; Lingling Wang; Zhi Zhou; Mengqiang Wang; Qilin Yi; Linsheng Song
Nitric oxide (NO) is an important gasotransmitter which plays a key role on the modulation of immune response in all vertebrates and invertebrates. In the present study, the modulation of inducible NO on immune response of scallop Chlamys farreri was investigated via proteomic analysis. Total proteins from hepatopancreas of scallops treated with lipopolysaccharide (LPS) and/or the inhibitor of vertebrate inducible NO synthase (S-methylisothiourea sulfate, SMT) for 12 h were analyzed via 2-D PAGE and ImageMaster 2D Platinum. There were 890, 1189 and 1046 protein spots detected in the groups treated by phosphate buffered saline (PBS), LPS and LPS+SMT, respectively, and 26 differentially expressed protein spots were identified among them. These proteins were annotated with binding or catalytic activity, and most of them were involved in metabolic or cellular processes. Some immune-related or antioxidant-related molecules such as single Ig IL-1-related receptor, guanine nucleotide-binding protein subunit beta-like protein and peroxiredoxin were identified, and the changes of their expression levels in LPS group were intensified significantly after adding SMT. The decreased expression level of tyrosinase and increased level of glutathione S-transferase 4 in LPS group were diametrically reversed by appending SMT. Moreover, interferon stimulated exonuclease gene 20-like protein and copper chaperone for superoxide dismutase were only induced by LPS+SMT stimulation but not by LPS stimulation. These data indicated that NO could modulate many immunity processes in scallop, such as NF-κB transactivation, cytoskeleton reorganization and other pivotal processes, and it was also involved in the energy metabolism, posttranslational modification, detoxification and redox balance during the immune response.