Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiyong Xu is active.

Publication


Featured researches published by Qiyong Xu.


Waste Management | 2010

Attenuation of hydrogen sulfide at construction and demolition debris landfills using alternative cover materials.

Qiyong Xu; Timothy G. Townsend; Debra R. Reinhart

The attenuation of H(2)S emissions by various landfill cover materials was evaluated using both laboratory and field experiments. The results demonstrated that cover materials consisting of selected waste products (compost and yard trash) and soils amended with quicklime and calcium carbonate effectively attenuated H(2)S emissions and detectable H(2)S emissions were only encountered in a testing plot using a sandy soil cover (average emission rate was 4.67x10(-6)mgm(-2)s(-1)). H(2)S concentration profiles in the cover materials indicated that H(2)S was removed as it migrated through the cover materials. At the same depth in the testing area, the H(2)S concentration in the sandy soil field plot was always higher than that of other testing plots because the sand (a) demonstrated less ability to remove H(2)S and (b) exhibited a higher H(2)S concentration at the base of the cover. Laboratory experiments confirmed these observations, with a combination of physical adsorption, chemical reactions, and biological oxidation, accounting for the enhanced removal. In addition to removal, the results suggest that some of the cover materials reduced H(2)S generation by creating less favorable conditions for sulfate-reducing bacteria (e.g., high pH and temperature).


Journal of The Air & Waste Management Association | 2006

Hydrogen Sulfide Generation in Simulated Construction and Demolition Debris Landfills: Impact of Waste Composition

Kenton Yang; Qiyong Xu; Timothy G. Townsend; Paul A. Chadik; Gabriel Bitton; Matthew M. Booth

Abstract Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codis-posed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations >40,000 ppmv. Conversely, H2S concentrations were <1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.


Journal of Geotechnical and Geoenvironmental Engineering | 2012

Impact of Pressurized Liquids Addition on Landfill Slope Stability

Qiyong Xu; Thabet Tolaymat; Timothy G. Townsend

AbstractThe addition of liquids to municipal solid waste landfills, a practice sometimes performed under pressure to promote moisture distribution, has the potential to affect slope stability as a result of increased pore water pressure (and reduced shear strength) in the landfilled waste. Liquids addition into waste by using buried horizontal trenches was modeled to determine pore water pressure distributions, and the resulting effect on slope stability was assessed for different operational strategies. Model results using typical mechanical properties for solid waste found that pressurized liquids addition under a sloped landfill surface was possible without inducing a slope failure, providing liquids distribution was not obstructed. A reduction in the factor of safety occurred when simulating a poorly functioning leachate collection and removal system, a low-permeability cover layer within the landfill, a seepage control strategy using low-permeability soil, high liquids addition pressures, and waste p...


Archive | 2015

Sustainable Practices for Landfill Design and Operation

Timothy G. Townsend; Jon Powell; Pradeep Jain; Qiyong Xu; Thabet Tolaymat; Debra R. Reinhart

The management of municipal solid waste (MSW) in many countries throughout the world has changed significantly over the past 50 years, with a shift from uncontrolled dumping or burning to complex systems that integrate multiple processes to recover materials or energy and provide containment to reduce environmental impacts. A discussion of past landfilling practices and the evolution to modern landfilling is provided. Opportunities for designing and operating landfills in a more sustainable manner are discussed.


Waste Management | 2015

A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

Qiyong Xu; Ying Tian; Shen Wang; Jae Hac Ko

Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10months. The hybrid bioreactors were operated in an aerobic-anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia-nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75d and 60d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4L/kgvs and 113.2L/kgvs. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.


Journal of Hazardous Materials | 2011

Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors.

Qiyong Xu; Timothy G. Townsend; Gabriel Bitton

Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H(2)S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H(2)S production in landfills results from biological activity, the concept of inhibiting H(2)S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na(2)MoO(4)), ferric chloride (FeCl(3)), and hydrated lime (Ca(OH)(2)) - were evaluated using flask and column experiments. All three agents inhibited H(2)S generation, with Na(2)MoO(4) reducing H(2)S generation by interrupting the biological sulfate reduction process and Ca(OH)(2) providing an unfavorable pH for biological growth. Although FeCl(3) was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H(2)S production in the column experiment was a reduction in pH. Application of both Na(2)MoO(4) and FeCl(3) inhibited H(2)S generation over a long period (over 180 days), but the impact of Ca(OH)(2) decreased with time as the alkalinity it contributed was neutralized by the generated H(2)S. Practical application and potential environmental implications need additional exploration.


Journal of Hazardous Materials | 2014

Modeling of H2S migration through landfill cover materials

Qiyong Xu; Jon Powell; Pradeep Jain; Timothy G. Townsend

The emission of H2S from landfills in the United States is an emergent problem because measured concentrations within the waste mass and in ambient air have been observed at potentially unsafe levels for on-site workers and at levels that can cause a nuisance and potentially deleterious health impacts to surrounding communities. Though recent research has provided data on H2S concentrations that may be observed at landfills, facility operators and landfill engineers have limited predictive tools to anticipate and plan for potentially harmful H2S emissions. A one-dimensional gas migration model was developed to assist engineers and practitioners better evaluate and predict potential emission levels of H2S based on four factors: concentration of H2S below the landfill surface (C0), advection velocity (v), H2S effective diffusion coefficient (D), and H2S adsorption coefficient of landfill cover soil (μ). Model simulations indicated that H2S migration into the atmosphere can be mitigated by reducing H2S diffusion and advection or using alternative cover soils with a high H2S adsorption coefficient. Laboratory column experiments were conducted to investigate the effects of the four parameters on H2S migration in cover soils and to calculate the adsorption coefficient of different cover materials. The model was validated by comparing results with laboratory column experiments. Based on the results, the laboratory column provides an effective way to estimate the H2S adsorption coefficient, which can then be incorporated into the developed model to predict the depth of cover soil required to reduce emitted H2S concentrations below a desired level.


Waste Management & Research | 2014

Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection

Karamjit Singh; Ravi Kadambala; Pradeep Jain; Qiyong Xu; Timothy G. Townsend

Waste hydraulic conductivity and anisotropy represent two important parameters controlling fluid movement in landfills, and thus are the key inputs in design methods where predictions of moisture movement are necessary. Although municipal waste hydraulic conductivity has been estimated in multiple laboratory and field studies, measurements of anisotropy, particularly at full scale, are rare, even though landfilled municipal waste is generally understood to be anisotropic. Measurements from a buried liquids injection well surrounded by pressure transducers at a full-scale landfill in Florida were collected and examined to provide an estimate of in-situ waste anisotropy. Liquids injection was performed at a constant pressure and the resulting pore pressures in the surrounding waste were monitored. Numerical fluid flow modeling was employed to simulate the pore pressures expected to occur under the conditions operated. Nine different simulations were performed at three different lateral hydraulic conductivity values and three different anisotropy values. Measured flowrate and pore pressures collected from conditions of approximate steady state were compared with the simulation results to assess the range of anisotropies. The results support that compacted municipal waste in landfills is anisotropic, provide anisotropy estimates greater than previous measurements, and suggest that anisotropy decreases with landfill depth.


Waste Management | 2016

Comparison of biogas recovery from MSW using different aerobic-anaerobic operation modes

Qiyong Xu; Ying Tian; Hwidong Kim; Jae Hac Ko

Aeration pretreatment was demonstrated as an efficient technology to promote methane recovery from a bioreactor landfill with high food waste content. In this study, a short-term experiment was conducted to investigate the effects of aerobic-anaerobic operation modes on biogas recovery. Three landfill-simulated columns (anaerobic control (A1), a constant aeration (C1) and a gradually reduced aeration (C2)) were constructed and operated for 130days. The aeration frequency was adjusted by oxygen consumption in an aerated MSW landfill. After aerobic pretreatment was halted, the methanogenic phase was rapidly developed in both the C1 and C2 columns, reducing the volatile fatty acid (VFA) concentrations and increasing pH. The methane volumes per dry MSW produced from the C1 and C2 columns were approximately 62L/kg VS and 75L/kg VS, respectively, while methane produced from the A1 column was almost negligible. The result clearly showed that aerobic pretreatment with gradual reduction of aeration rates could not only improve methane recovery from waste decomposition, but also enhance leachate COD and VFA removal.


Journal of Hazardous, Toxic, and Radioactive Waste | 2013

Seepage Control Strategies at Bioreactor Landfills

Qiyong Xu; Jon Powell; Thabet Tolaymat; Timothy G. Townsend

AbstractThe occurrence of leachate seepage at side slopes of municipal solid waste landfills represents a major design and operational concern at bioreactor landfills where leachate is recirculated into the waste mass to enhance degradation of organic materials. Full-scale bioreactor landfills typically add liquids to the waste under pressure to optimize moisture distribution. When liquids are added at a high pressure or at a flow rate higher than the absorption capacity of the waste mass, there is a possibility of seeps. Two general approaches to controlling landfill leachate seepage are described: a less aggressive strategy where liquid volumes are limited to avoid seeps and a more aggressive strategy where seeps are more likely to occur but with design and operation considerations in place to mitigate seepage. Liquids addition into waste using buried horizontal trenches was modeled to determine moisture distribution under a variety of conditions most likely to lead to leachate seepage at bioreactor lan...

Collaboration


Dive into the Qiyong Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thabet Tolaymat

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Debra R. Reinhart

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge