Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiyuan Yang is active.

Publication


Featured researches published by Qiyuan Yang.


International Journal of Obesity | 2015

Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1

Songbo Wang; Xingwei Liang; Qiyuan Yang; Xing Fu; Carl J. Rogers; Mei-Jun Zhu; Buel D. Rodgers; Qingyan Jiang; Michael V. Dodson; Min Du

Objective:Development of brown-like/beige adipocytes in white adipose tissue (WAT) helps to reduce obesity. Thus we investigated the effects of resveratrol, a dietary polyphenol capable of preventing obesity and related complications in humans and animal models, on brown-like adipocyte formation in inguinal WAT (iWAT).Methods:CD1 female mice (5-month old) were fed a high-fat diet with/without 0.1% resveratrol. In addition, primary stromal vascular cells separated from iWAT were subjected to resveratrol treatment. Markers of brown-like (beige) adipogenesis were measured and the involvement of AMP-activated protein kinase (AMPK) α1 was assessed using conditional knockout.Results:Resveratrol significantly increased mRNA and/or protein expression of brown adipocyte markers, including uncoupling protein 1 (UCP1), PR domain-containing 16, cell death-inducing DFFA-like effector A, elongation of very long-chain fatty acids protein 3, peroxisome proliferator-activated receptor-γ coactivator 1α, cytochrome c and pyruvate dehydrogenase, in differentiated iWAT stromal vascular cells (SVCs), suggesting that resveratrol induced brown-like adipocyte formation in vitro. Concomitantly, resveratrol markedly enhanced AMPKα1 phosphorylation and differentiated SVC oxygen consumption. Such changes were absent in cells lacking AMPKα1, showing that AMPKα1 is a critical mediator of resveratrol action. Resveratrol also induced beige adipogenesis in vivo along with the appearance of multiocular adipocytes, increased UCP1 expression and enhanced fatty acid oxidation.Conclusions:Resveratrol induces brown-like adipocyte formation in iWAT via AMPKα1 activation and suggest that its beneficial antiobesity effects may be partly due to the browning of WAT and, as a consequence, increased oxygen consumption.


Diabetes | 2013

Maternal Obesity Induces Epigenetic Modifications to Facilitate Zfp423 Expression and Enhance Adipogenic Differentiation in Fetal Mice

Qiyuan Yang; Junfang Liang; Carl J. Rogers; Junxing Zhao; Mei-Jun Zhu; Min Du

Maternal obesity (MO) predisposes offspring to obesity and type 2 diabetes despite poorly defined mechanisms. Zfp423 is the key transcription factor committing cells to the adipogenic lineage, with exceptionally dense CpG sites in its promoter. We hypothesized that MO enhances adipogenic differentiation during fetal development through inducing epigenetic changes in the Zfp423 promoter and elevating its expression. Female mice were subjected to a control (Con) or obesogenic (OB) diet for 2 months, mated, and maintained on their diets during pregnancy. Fetal tissue was harvested at embryonic day 14.5 (E14.5), when the early adipogenic commitment is initiated. The Zfp423 expression was 3.6-fold higher and DNA methylation in the Zfp423 promoter was lower in OB compared with Con. Correspondingly, repressive histone methylation (H3K27me3) was lower in the Zfp423 promoter of OB fetal tissue, accompanied by reduced binding of enhancer of zeste 2 (EZH2). Gain- and loss-of-function analysis showed that Zfp423 regulates early adipogenic differentiation in fetal progenitor cells. In summary, MO enhanced Zfp423 expression and adipogenic differentiation during fetal development, at least partially through reducing DNA methylation in the Zfp423 promoter, which is expected to durably elevate adipogenic differentiation of progenitor cells in adult tissue, programming adiposity and metabolic dysfunction later in life.


Cell Metabolism | 2016

AMPK/α-Ketoglutarate Axis Dynamically Mediates DNA Demethylation in the Prdm16 Promoter and Brown Adipogenesis

Qiyuan Yang; Xingwei Liang; Xiaofei Sun; Lupei Zhang; Xing Fu; Carl J. Rogers; Anna Berim; Shuming Zhang; Songbo Wang; Bo Wang; Marc Foretz; Benoit Viollet; David R. Gang; Buel D. Rodgers; Mei-Jun Zhu; Min Du

Promoting brown adipose tissue (BAT) development is an attractive strategy for the treatment of obesity, as activated BAT dissipates energy through thermogenesis; however, the mechanisms controlling BAT formation are not fully understood. We hypothesized that as a master regulator of energy metabolism, AMP-activated protein kinase (AMPK) may play a direct role in the process and found that AMPKα1 (PRKAA1) ablation reduced Prdm16 expression and impaired BAT development. During early brown adipogenesis, the cellular levels of α-ketoglutarate (αKG), a key metabolite required for TET-mediated DNA demethylation, were profoundly increased and required for active DNA demethylation of the Prdm16 promoter. AMPKα1 ablation reduced isocitrate dehydrogenase 2 activity and cellular αKG levels. Remarkably, postnatal AMPK activation with AICAR or metformin rescued obesity-induced suppression of brown adipogenesis and thermogenesis. In summary, AMPK is essential for the epigenetic control of BAT development through αKG, thus linking a metabolite to progenitor cell differentiation and thermogenesis.


PLOS ONE | 2012

Zfp423 Promotes Adipogenic Differentiation of Bovine Stromal Vascular Cells

Yan Huang; Arun Kr Das; Qiyuan Yang; Mei-Jun Zhu; Min Du

Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05) in high adipogenic cells, while transforming growth factor (TGF)-β was higher (156.1±48.7%, P<0.05) in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05) in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular adipogenesis and marbling in beef cattle.


The Journal of Physiology | 2017

Resveratrol supplementation of high‐fat diet‐fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring

Tiande Zou; Daiwen Chen; Qiyuan Yang; Bo Wang; Mei-Jun Zhu; Peter W. Nathanielsz; Min Du

Maternal high‐fat diet impairs brown adipocyte function and correlates with obesity in offspring. Maternal resveratrol administration recovers metabolic activity of offspring brown adipose tissue. Maternal resveratrol promotes beige adipocyte development in offspring white adipose tissue. Maternal resveratrol intervention protects offspring against high‐fat diet‐induced obesity.


Meat Science | 2015

Fetal programming in meat production

Min Du; Bo Wang; Xing Fu; Qiyuan Yang; Mei-Jun Zhu

Nutrient fluctuations during the fetal stage affects fetal development, which has long-term impacts on the production efficiency and quality of meat. During the early development, a pool of mesenchymal progenitor cells proliferate and then diverge into either myogenic or adipogenic/fibrogenic lineages. Myogenic progenitor cells further develop into muscle fibers and satellite cells, while adipogenic/fibrogenic lineage cells develop into adipocytes, fibroblasts and resident fibro-adipogenic progenitor cells. Enhancing the proliferation and myogenic commitment of progenitor cells during fetal development enhances muscle growth and lean production in offspring. On the other hand, promoting the adipogenic differentiation of adipogenic/fibrogenic progenitor cells inside the muscle increases intramuscular adipocytes and reduces connective tissue, which improves meat marbling and tenderness. Available studies in mammalian livestock, including cattle, sheep and pigs, clearly show the link between maternal nutrition and the quantity and quality of meat production. Similarly, chicken muscle fibers develop before hatching and, thus, egg and yolk sizes and hatching temperature affect long-term growth performance and meat production of chicken. On the contrary, because fishes are able to generate new muscle fibers lifelong, the impact of early nutrition on fish growth performance is expected to be minor, which requires further studies.


Cell Death & Differentiation | 2017

AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression

Xiaofei Sun; Qiyuan Yang; Carl J. Rogers; Min Du; Mei-Jun Zhu

Impairment in gut epithelial integrity and barrier function is associated with many diseases. The homeostasis of intestinal barrier is based on a delicate regulation of epithelial proliferation and differentiation. AMP-activated protein kinase (AMPK) is a master regulator of energy metabolism, and cellular metabolites are intrinsically involved in epigenetic modifications governing cell differentiation. We aimed to evaluate the regulatory role of AMPK on intestinal epithelial development and barrier function. In this study, AMPK activator (AICAR) improved the barrier function of Caco-2 cells as indicated by increased transepithelial electrical resistance and reduced paracellular FITC-dextran permeability; consistently, AICAR enhanced epithelial differentiation and tight junction formation. Transfection of Caco-2 cells with AMPK WT plasmid, which enhances AMPK activity, improved epithelial barrier function and epithelial differentiation, while K45R (AMPK dominant negative mutant) impaired; these changes were correlated with the expression of caudal type homeobox 2 (CDX2), the key transcription factor committing cells to intestinal epithelial lineage. CDX2 deficiency abolished intestinal differentiation promoted by AMPK activation. Mechanistically, AMPK inactivation was associated with polycomb repressive complex 2 regulated enrichment of H3K27me3, the inhibitory histone modification, and lysine-specific histone demethylase-1-mediated reduction of H3K4me3, a permissive histone modification. Those histone modifications provide a mechanistic link between AMPK and CDX2 expression. Consistently, epithelial AMPK knockout in vivo reduced CDX2 expression, impaired intestinal barrier function, integrity and ultrastructure of tight junction, and epithelial cell migration, promoted intestinal proliferation and exaggerated dextran sulfate sodium-induced colitis. In summary, AMPK enhances intestinal barrier function and epithelial differentiation via promoting CDX2 expression, which is partially mediated by altered histone modifications in the Cdx2 promoter.


The Journal of Physiology | 2016

Maternal obesity epigenetically alters visceral fat progenitor cell properties in male offspring mice

Xingwei Liang; Qiyuan Yang; Xing Fu; Carl J. Rogers; Bo Wang; Hong Pan; Mei-Jun Zhu; Peter W. Nathanielsz; Min Du

Maternal obesity reduces adipogenic progenitor density in offspring adipose tissue. The ability of adipose tissue expansion in the offspring of obese mothers is limited and is associated with metabolic dysfunction of adipose tissue when challenged with a high‐fat diet. Maternal obesity induces DNA demethylation in the promoter of zinc finger protein 423, which renders progenitor cells with a high adipogenic capacity. Maternal obesity demonstrates long‐term effects on the adipogenic capacity of progenitor cells in offspring adipose tissue, demonstrating a developmental programming effect.


Scientific Reports | 2016

Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice

Xingwei Liang; Qiyuan Yang; Lupei Zhang; Joseph Maricelli; Buel D. Rodgers; Mei-Jun Zhu; Min Du

Maternal obesity and high-fat diet (HFD) predisposes offspring to obesity and metabolic diseases. Due to uncoupling, brown adipose tissue (BAT) dissipates energy via heat generation, mitigating obesity and diabetes. The lactation stage is a manageable period for improving the health of offspring of obese mothers, but the impact of maternal HFD during lactation on offspring BAT function is unknown. To determine, female mice were fed either a control or HFD during lactation. At weaning, HFD offspring gained more body weight and had greater body fat mass compared to the control, and these differences maintained into adulthood, which correlated with glucose intolerance and insulin resistance in HFD offspring. Adaptive thermogenesis of BAT was impaired in HFD offspring at weaning. In adulthood, HFD offspring BAT had lower Ucp1 expression and thermogenic activity. Mechanistically, maternal HFD feeding during lactation elevated peripheral serotonin, which decreased the sensitivity of BAT to sympathetic β3-adrenergic signaling. Importantly, early postnatal metformin administration decreased serotonin concentration and ameliorated the impairment of offspring BAT due to maternal HFD. Our data suggest that attenuation of BAT thermogenic function may be a key mechanism linking maternal HFD during lactation to persisted metabolic disorder in the offspring.


World Journal of Gastroenterology | 2014

Mast cell deficiency exacerbates inflammatory bowel symptoms in interleukin-10-deficient mice

Hanying Zhang; Yansong Xue; Hui Wang; Yan Huang; Min Du; Qiyuan Yang; Mei-Jun Zhu

AIM To test the role of mast cells in gut inflammation and colitis using interleukin (IL)-10-deficient mice as an experimental model. METHODS Mast cell-deficient (Kit (W-sh/W-sh) ) mice were crossbred with IL-10-deficient mice to obtain double knockout (DKO) mice. The growth, mucosal damage and colitis status of DKO mice were compared with their IL-10-deficient littermates. RESULTS DKO mice exhibited exacerbated colitis compared with their IL-10-deficient littermates, as shown by increased pathological score, higher myeloperoxidase content, enhanced Th1 type pro-inflammatory cytokines and inflammatory signaling, elevated oxidative stress, as well as pronounced goblet cell loss. In addition, deficiency in mast cells resulted in enhanced mucosal damage, increased gut permeability, and impaired epithelial tight junctions. Mast cell deficiency was also linked to systemic inflammation, as demonstrated by higher serum levels of tumor necrosis factor α and interferon γ in DKO mice than that in IL-10-deficient mice. CONCLUSION Mast cell deficiency in IL-10-deficient mice resulted in systematic and gut inflammation, impaired gut barrier function, and severer Th1-mediated colitis when compared to mice with only IL-10-deficiency. Inflammation and impaired gut epithelial barrier function likely form a vicious cycle to worsen colitis in the DKO mice.

Collaboration


Dive into the Qiyuan Yang's collaboration.

Top Co-Authors

Avatar

Min Du

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Mei-Jun Zhu

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Xing Fu

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Xingwei Liang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Bo Wang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Carl J. Rogers

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Buel D. Rodgers

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lupei Zhang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Xiaofei Sun

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge