Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Qiyun Ma is active.

Publication


Featured researches published by Qiyun Ma.


Human and Ecological Risk Assessment | 2016

Human health risk assessment and source diagnosis of polycyclic aromatic hydrocarbons (PAHs) in the corn and agricultural soils along main roadside in Changchun, China

Yanan Chen; Jiquan Zhang; Qiyun Ma; Caiyun Sun; Si Ha; Feng Zhang

ABSTRACT This work was to investigate distribution characteristics, human health risk assessment, and possible sources of 16 priority polycyclic aromatic hydrocarbons (PAHs) in corn and surface soils of farmlands along main roadside in Changchun City, Jilin Province, China. Total concentrations of 16 PAHs ranged from 1572.4 to 4390.2 µg/kg with a mean value of 2954.9 µg/kg in soils and from 219.9 to 627 µg/kg with a mean value of 362µg/kg in corn. Light-molecular-weight PAHs (2–3 rings) concentration was dominant in soils, accounting for 51%, whereas high-molecular-weight PAHs (5–6 rings) concentration was highest in corn, accounting for 48%. The results of plant concentration factor indicated that high-molecular-weight PAHs have greater mobility. To evaluate potential risk to human health, hazard index (HI) and risk index (RI) were employed. The values of HI for corn and soils were both smaller than 1, indicating that exposure of PAHs posed no or little potential risk to local residents. The fact that values of RI for corn and soils were smaller than 1 × 10–4 suggested that exposure of PAHs posed no or little cancer risk to local residents. The possible sources of PAHs in corn and soils were both identified as mixture patterns of pyrogenic and petrogenic sources.


International Journal of Environmental Research and Public Health | 2015

Human Health and Ecological Risk Assessment of 16 Polycyclic Aromatic Hydrocarbons in Drinking Source Water from a Large Mixed-Use Reservoir

Caiyun Sun; Jiquan Zhang; Qiyun Ma; Yanan Chen

Reservoirs play an important role in living water supply and irrigation of farmlands, thus the water quality is closely related to public health. However, studies regarding human health and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the waters of reservoirs are very few. In this study, Shitou Koumen Reservoir which supplies drinking water to 8 million people was investigated. Sixteen priority PAHs were analyzed in a total of 12 water samples. In terms of the individual PAHs, the average concentration of Fla, which was 5.66 × 10−1 μg/L, was the highest, while dibenz(a,h)anthracene which was undetected in any of the water samples was the lowest. Among three PAH compositional patterns, the concentration of low-molecular-weight and 4-ring PAHs was dominant, accounting for 94%, and the concentration of the total of 16 PAHs was elevated in constructed-wetland and fish-farming areas. According to the calculated risk quotients, little or no adverse effects were posed by individual and complex PAHs in the water on the aquatic ecosystem. In addition, the results of hazard quotients for non-carcinogenic risk also showed little or no negative impacts on the health of local residents. However, it could be concluded from the carcinogenic risk results that chrysene and complex PAHs in water might pose a potential carcinogenic risk to local residents. Moreover, the possible sources of PAHs were identified as oil spills and vehicular emissions, as well as the burning of biomass and coal.


Remote Sensing | 2016

Dynamics of Fractional Vegetation Coverage and Its Relationship with Climate and Human Activities in Inner Mongolia, China

Siqin Tong; Jiquan Zhang; Si Ha; Quan Lai; Qiyun Ma

Long-term remote sensing normalized difference vegetation index (NDVI) datasets have been widely used in monitoring vegetation changes. In this study, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g dataset was used as the data source, and the dimidiate pixel model, intensity analysis, and residual analysis were used to analyze the changes of vegetation coverage in Inner Mongolia—from 1982 to 2010—and their relationships with climate and human activities. This study also explored vegetation changes in Inner Mongolia with respect to natural factors and human activities. The results showed that the estimated vegetation coverage exhibited a high correlation (0.836) with the actual measured values. The increased vegetation coverage area (49.2% of the total area) was larger than the decreased area (43.3%) from the 1980s to the 1990s, whereas the decreased area (57.1%) was larger than the increased area (35.6%) from the 1990s to the early 21st century. This finding indicates that vegetation growth in the 1990s was better than that in the other two decades. Intensity analysis revealed that changes in the average annual rate from the 1990s to the early 21st century were relatively faster than those in the 1980s–1990s. During the 1980s–1990s, the gain of high vegetation coverage areas was active, and the loss was dormant; in contrast, the gain and loss of low vegetation coverage areas were both dormant. In the 1990s to the early 21st century, the gains of high and low vegetation coverage areas were both dormant, whereas the losses were active. During the study period, areas of low vegetation coverage were converted into ones with higher coverage, and areas of high vegetation coverage were converted into ones with lower coverage. The vegetation coverage exhibited a good correlation (R2 = 0.60) with precipitation, and the positively correlated area was larger than the negatively correlated area. Human activities not only promote the vegetation coverage, but also have a destructive effect on vegetation, and the promotion effect during 1982 to 2000 was larger than from 2001 to 2010, while, the destructive effect was larger from 2000 to 2010.


Human and Ecological Risk Assessment | 2016

Risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments from a mixed-use reservoir

Caiyun Sun; Jiquan Zhang; Qiyun Ma; Feng Zhang; Yanan Chen

ABSTRACT Although reservoirs in China are of great significance, very few studies on risk assessment have been reported for reservoirs. This study investigated distribution characteristics, cancer and ecological risks, and source diagnosis of 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediments from Shitou Koumen Reservoir in Jilin Province, China. A total of 12 sediment samples were collected from the reservoir in August (wet season) 2014. Total PAH concentrations in sediment samples ranged from 1294.51 ng/g to 2755.35 ng/g with a mean concentration of 1757.54 ng/g. For individual PAHs, average concentration of Nap was the highest, 800.56 ng/g, while Acy, Fla, BkF, and DahA were undetected in sediment samples. Light PAHs (2–3 rings) accounting for 74.21% was a dominant PAH compositional pattern. Pearson correlation analysis was carried out; results showed that total PAHs was strongly correlated with the highly enriched sedimentary PAHs, and pH was a major factor in controlling PAH distribution. Lifetime cancer risk was employed to assess cancer risk; results indicated that the fish-culturing area was exposed to cancer risk. The molecular diagnostic ratios of isomeric PAHs were applied to identify possible PAH sources; primary PAH sources were identified as oil-related activities, burning agricultural wastes, vehicular emissions, and industrial discharges.


Science of The Total Environment | 2017

Spatiotemporal drought variability on the Mongolian Plateau from 1980–2014 based on the SPEI-PM, intensity analysis and Hurst exponent

Siqin Tong; Quan Lai; Jiquan Zhang; Yuhai Bao; A. Lusi; Qiyun Ma; Xiangqian Li; Feng Zhang

Knowledge about variations of drought can provide a scientific basis for water resource planning and drought mitigation. In this study, the variations and patterns of drought identified by the Standardized Precipitation Evapotranspiration Index (SPEI) were investigated on the Mongolian Plateau for the period 1980-2014, based on intensity analysis, linear regression, the Mann-Kendall test, wavelet analysis, and Hurst exponent. The results show that: 1) the annual SPEI decreased at a rate of -0.0133/yr over the past 35years, and a major abrupt change occurred in 1999; 2) drought on the Mongolian Plateau intensified from 1980 to 2014, and the drought in Mongolia has been more serious than in Inner Mongolia since the beginning of the 21st century; 3) the rate of drought/wet changes in 1980s-1990s and 1990s-2000s were faster than in 2000s-2010s. In 1980s-1990s, the different drought levels were transformed into various wet levels. In 1990s-2000s, the wet levels were transformed into drought, and in 2000s-2010s, the losses of drought levels were larger than the gains in wet levels; 4) the Hurst exponent is a reliable way to predict drought tendency, with a predictive accuracy as high as 91.7%; 5) the mean H value of the SPEI time series during 1980-2014 was 0.533, indicating that the future drought trend is generally consistent with the current state. In the future, the proportion of area with increasingly severe drought (72.2%) will be larger than that with increasingly wetter conditions (27.8%) on the Mongolian Plateau.


Environmental Research | 2017

Dynamics and ecological risk assessment of chromophoric dissolved organic matter in the Yinma River Watershed: Rivers, reservoirs, and urban waters

Sijia Li; Jiquan Zhang; Enliang Guo; Feng Zhang; Qiyun Ma; Guangyi Mu

Abstract The extensive use of a geographic information system (GIS) and remote sensing in ecological risk assessment from a spatiotemporal perspective complements ecological environment management. Chromophoric dissolved organic matter (CDOM), which is a complex mixture of organic matter that can be estimated via remote sensing, carries and produces carcinogenic disinfection by‐products and organic pollutants in various aquatic environments. This paper reports the first ecological risk assessment, which was conducted in 2016, of CDOM in the Yinma River watershed including riverine waters, reservoir waters, and urban waters. Referring to the risk formation theory of natural disaster, the entropy evaluation method and DPSIR (driving force‐pressure‐state‐impact‐response) framework were coupled to establish a hazard and vulnerability index with multisource data, i.e., meteorological, remote sensing, experimental, and socioeconomic data, of this watershed. This ecological vulnerability assessment indicator system contains 23 indicators with respect to ecological sensitivity, ecological pressure, and self‐resilience. The characteristics of CDOM absorption parameters from different waters showed higher aromatic content and molecular weights in May because of increased terrestrial inputs. The assessment results indicated that the overall ecosystem risk in the study area was focused in the extremely, heavily, and moderately vulnerable regions. The ecological risk assessment results objectively reflect the regional ecological environment and demonstrate the potential of ecological risk assessment of pollutants over traditional chemical measurements. HighlightsCDOM absorption parameters from Riverine waters, Reservoir waters and Urban waters exhibited seasonal difference due to the terrestrial inputs.Referred to the risk formation theory of natural disaster, entropy evaluation method and DPSIR (force‐pressure‐state‐impact‐response) framework were coupled to establish hazard and vulnerability index.The overall ecosystem risk in this study area was focus on the regions of extremely, heavily and moderately vulnerable regions.


Stochastic Environmental Research and Risk Assessment | 2016

Ecosystem health assessment based on DPSIRM framework and health distance model in Nansi Lake, China

Feng Zhang; Jiquan Zhang; Rina Wu; Qiyun Ma; Jun Yang

As lake ecosystem assessment is the foundation to achieve lake monitoring, environmental management and ecological restoration, a new concept of lake ecosystem health and driving force-pressure-state-impact-response-management framework was proposed to find out the causal relationship of the system and health distance model was taken to represent the health level of ecosystem. An assessment indicator system comprised of water quality, ecological and socio-economic criteria was established. The evaluation models were applied for the assessment of the ecosystem health level of a typical lake, Nansi Lake, China. Depends on the values of health distance, the heath level was described as 5°: very healthy, healthy, general healthy, sub-healthy and diseased. Using field investigation data and statistic data within the theory and applied models, the results of comprehensive assessment show that: (1) the health distances of water quality indicators, ecological indicators, socio-economic indicators and comprehensive health distance were 0.3989, 0.2495, 0.4983 and 0.4362, respectively. The health level was in general healthy condition. Ecological indicators were in healthy condition, which indicate that the stability was high. The distance of water quality had shown a tendency to approach general healthy level. As the health distance of socio-economic indicators have shown a bad impact form human beings, more effective measures need to be developed. (2) The results of a case study demonstrated that the methods in this paper provide a similar result corresponding with the actual lake health condition. Therefore, this paper shows that the proposed method is efficient and worths generalization.


Mathematical Problems in Engineering | 2017

Analysis of Drought Characteristics in Xilingol Grassland of Northern China Based on SPEI and Its Impact on Vegetation

Siqin Tong; Yuhai Bao; Rigele Te; Qiyun Ma; Si Ha; A. Lusi

This research is based on the standardized precipitation evapotranspiration index (SPEI) and normalized difference vegetation index (NDVI) which represent the drought and vegetation condition on land. Take the linear regression method and Pearson correlation analysis to study the spatial and temporal evolution of SPEI and NDVI and the drought effect on vegetation. The results show that (1) during 1961–2015, SPEI values at different time scales showed a downward trend; SPEI-12 has a mutation in 1997 and the SPEI value significantly decreased after this year. (2) During 2000–2015, the annual growing season SPEI has an obvious upward trend in time and the apparent wetting spatially. (3) In the recent 16 years, the growing season NDVI showed an upward trend and more than 80% of the total area’s vegetation increased in Xilingol. (4) Vegetation coverage in Xilingol grew better in humid years and opposite in arid years. SPEI and NDVI had a significant positive correlation; 98% of the region showed positive correlation, indicating that meteorological drought affects vegetation growth more in arid and semiarid region. (5) The effect of drought on vegetation has lag effect, and the responses of different grassland types to different scales of drought were different.


Environmental Geochemistry and Health | 2017

Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: sediment–water partitioning, source identification and environmental health risk assessment

Caiyun Sun; Jiquan Zhang; Qiyun Ma; Yanan Chen; Hanyu Ju


Water | 2017

Changes of Reference Evapotranspiration and Its Relationship to Dry/Wet Conditions Based on the Aridity Index in the Songnen Grassland, Northeast China

Qiyun Ma; Jiquan Zhang; Caiyun Sun; Enliang Guo; Feng Zhang; Mengmeng Wang

Collaboration


Dive into the Qiyun Ma's collaboration.

Top Co-Authors

Avatar

Jiquan Zhang

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Feng Zhang

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Yanan Chen

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Caiyun Sun

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Si Ha

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Siqin Tong

Inner Mongolia Normal University

View shared research outputs
Top Co-Authors

Avatar

Enliang Guo

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Rina Wu

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

A. Lusi

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Hanyu Ju

Northeast Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge