Qosay Al-Balas
Jordan University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Qosay Al-Balas.
Peptides | 2014
Ammar Almaaytah; Qosay Al-Balas
Scorpion venoms are rich sources of biologically active peptides that are classified into disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs). DBPs are the main scorpion venom components responsible for the neurotoxic effects observed during scorpion envenomation as they usually target membrane bound ion channels of excitable and non-excitable cells. Several hundred DBPs have been identified and functionally characterized in the past two decades. The NDBPs represent a novel group of molecules that have gained great interest only recently due to their high diversity both in their primary structures and bioactivities. This review provides an overview of scorpion NDBPs focusing on their therapeutic applications, modes of discovery, mechanisms of NDBPs genetic diversity and structural properties. It also provides a simple classification for NDBPs that could be adopted and applied to other NDBPs identified in future studies.
Molecules | 2012
Qosay Al-Balas; Mohammad A. Hassan; Buthina Al-Oudat; Hassan Alzoubi; Nizar M. Mhaidat; Ammar Almaaytah
Within this study, a unique 3D structure-based pharmacophore model of the enzyme glyoxalase-1 (Glo-1) has been revealed. Glo-1 is considered a zinc metalloenzyme in which the inhibitor binding with zinc atom at the active site is crucial. To our knowledge, this is the first pharmacophore model that has a selective feature for a “zinc binding group” which has been customized within the structure-based pharmacophore model of Glo-1 to extract ligands that possess functional groups able to bind zinc atom solely from database screening. In addition, an extensive 2D similarity search using three diverse similarity techniques (Tanimoto, Dice, Cosine) has been performed over the commercially available “Zinc Clean Drug-Like Database” that contains around 10 million compounds to help find suitable inhibitors for this enzyme based on known inhibitors from the literature. The resultant hits were mapped over the structure based pharmacophore and the successful hits were further docked using three docking programs with different pose fitting and scoring techniques (GOLD, LibDock, CDOCKER). Nine candidates were suggested to be novel Glo-1 inhibitors containing the “zinc binding group” with the highest consensus scoring from docking.
Pharmaceuticals | 2014
Ammar Almaaytah; Shadi Tarazi; Ahmad Abualhaijaa; Yara Altall; Nizar Al-Shar'i; Khaldon Bodoor; Qosay Al-Balas
There is great interest in the development of antimicrobial peptides as a potentially novel class of antimicrobial agents. Several structural determinants are responsible for the antimicrobial and cytolytic activity of antimicrobial peptides. In our study, a new synthetic peptide analog, AamAP1-Lysine from the naturally occurring scorpion venom antimicrobial peptide AamAP1, was designed by modifying the parent peptide in order to increase the positive charge and optimize other physico-chemical parameters involved in antimicrobial activity. AamAP1-Lysine displayed potent antibacterial activity against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration was in the range of 5 to 15 µM with a 10 fold increase in potency over the parent peptide. The hemolytic and antiproliferative activity of AamAP1-Lysine against eukaryotic mammalian cells was minimal at the concentration range needed to inhibit bacterial growth. The antibacterial mechanism analysis indicated that AamAP1-Lysine is probably inducing bacterial cell death through membrane damage and permeabilization determined by the release of β-galactosidase enzyme from peptide treated E. coli cells. DNA binding studies revealed that AamAP1-Lysine caused complete retardation of DNA migration and could display intracellular activities in addition to the membrane permeabilization mode of action reported earlier. In conclusion, AamAP1-Lysine could prove to be a potential candidate for antimicrobial drug development in future studies.
Pharmaceuticals | 2013
Qosay Al-Balas; Haneen A. Amawi; Mohammad A. Hassan; Amjad M. Qandil; Ammar Almaaytah; Nizar M. Mhaidat
Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor’s binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski’s “rule of five” and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.
Cytotechnology | 2016
Nizar M. Mhaidat; Karem H. Alzoubi; Omar F. Khabour; Mohammed N. Banihani; Qosay Al-Balas; Sulaiman Swaidan
This study was carried out to investigate the activation status of unfolded protein response (UPR) in colorectal cancer (CRC) and its contribution to CRC resistance to chemotherapy-induced apoptosis. Chemotherapy-induced apoptosis was assessed by the propidium iodide method. Activation of UPR was evaluated in CRC cell lines using immunoblotting technique and in CRC tissues using immunohistochemistry. Findings of the present study revealed that the UPR is constitutively activated in CRC cell lines and CRC tissues isolated from patients, as evidenced by relatively high levels of the 78-kDa glucose-regulated protein (GRP78) and spliced X-box-binding protein 1 mRNA in tissue samples. In addition, CRC cell lines differentially responded to clinically relevant DNA-targeting agents including cisplatin, and 5-flourouracil. Moreover, the levels of GRP78 were inversely associated with sensitivity of CRC cells to chemotherapy-induced apoptosis. Inhibition of GRP78 by siRNA resulted in increased sensitivity of CRC cells to chemotherapeutic agents. Collectively, current results appear to provide novel insights into the role of UPR in determining sensitivity of CRC cells to chemotherapeutic agents and might have important implications for personalized CRC treatment.
Drug Design Development and Therapy | 2014
Qosay Al-Balas; Munia F Sowaileh; Mohammad A. Hassan; Amjad M. Qandil; Karem H. Alzoubi; Nizar M. Mhaidat; Ammar Almaaytah; Omar F. Khabour
Background The dipeptidyl peptidase-IV (DPP-IV) enzyme is considered a pivotal target for controlling normal blood sugar levels in the body. Incretins secreted in response to ingestion of meals enhance insulin release to the blood, and DPP-IV inactivates these incretins within a short period and stops their action. Inhibition of this enzyme escalates the action of incretins and induces more insulin to achieve better glucose control in diabetic patients. Thus, inhibition of this enzyme will lead to better control of blood sugar levels. Methods In this study, computer-aided drug design was used to help establish a novel N-substituted aminobenzamide scaffold as a potential inhibitor of DPP-IV. CDOCKER software available from Discovery Studio 3.5 was used to evaluate a series of designed compounds and assess their mode of binding to the active site of the DPP-IV enzyme. The designed compounds were synthesized and tested against a DPP-IV enzyme kit provided by Enzo Life Sciences. The synthesized compounds were characterized using proton and carbon nuclear magnetic resonance, mass spectrometry, infrared spectroscopy, and determination of melting point. Results Sixty-nine novel compounds having an N-aminobenzamide scaffold were prepared, with full characterization. Ten of these compounds showed more in vitro activity against DPP-IV than the reference compounds, with the most active compounds scoring 38% activity at 100 μM concentration. Conclusion The N-aminobenzamide scaffold was shown in this study to be a valid scaffold for inhibiting the DPP-IV enzyme. Continuing work could unravel more active compounds possessing the same scaffold.
Drug Design Development and Therapy | 2017
Ammar Almaaytah; Gubran Khalil Mohammed; Ahmad Abualhaijaa; Qosay Al-Balas
Conventional antibiotics are facing strong microbial resistance that has recently reached critical levels. This situation is leading to significantly reduced therapeutic potential of a huge proportion of antimicrobial agents currently used in clinical settings. Antimicrobial peptides (AMPs) could provide the medical community with an alternative strategy to traditional antibiotics for combating microbial resistance. However, the development of AMPs into clinically useful antibiotics is hampered by their relatively low stability, toxicity, and high manufacturing costs. In this study, a novel in-house-designed potent ultrashort AMP named RBRBR was encapsulated into chitosan-based nanoparticles (CS-NPs) based on the ionotropic gelation method. The encapsulation efficacy reported for RBRBR into CS-NPs was 51.33%, with a loading capacity of 10.17%. The release kinetics of RBRBR from the nanocarrier exhibited slow release followed by progressive linear release for 14 days. The antibacterial kinetics of RBRBR-CS-NPs was tested against four strains of Staphylococcus aureus for 4 days, and the developed RBRBR-CS-NPs exhibited a 3-log decrease in the number of colonies when compared to CS-NP and a 5-log decrease when compared to control bacteria. The encapsulated peptide NP formulation managed to limit the toxicity of the free peptide against both mammalian cells and human erythrocytes. Additionally, the peptide NPs demonstrated up to 98% inhibition of biofilm formation when tested against biofilm-forming bacteria. Loading RBRBR into CS-NPs could represent an innovative approach to develop delivery systems based on NP technology for achieving potent antimicrobial effects against multidrug-resistant and biofilm-forming bacteria, with negligible systemic toxicity and reduced synthetic costs, thereby overcoming the obstructions to clinical development of AMPs.
Drug Design Development and Therapy | 2015
Nizar M. Mhaidat; Mousa Al-Smadi; Fouad Al-Momani; Karem H. Alzoubi; Iman Mansi; Qosay Al-Balas
Three derivatives of substituted 1,2,3-thia- or 1,2,3-selenadiazole (4a–c) were prepared and characterized by different chemical techniques. These compounds were evaluated for their antimicrobial and antitumor activities. Compounds 4a (propenoxide derivative), 4b (carbaldehyde derivative), and 4c (benzene derivative) were active against the yeast-like fungi Candida albicans. Compound 4a was active against gram-negative Escherichia coli, and compound 4c was active against the gram-positive Staphylococcus aureus. For the antitumor activity, both compounds 4b and 4c were active against all tested tumor cell lines, namely, SW480, HCT116, C32, MV3, HMT3522, and MCF-7. The activity of compound 4c was greater than that of compound 4b and more than that of the reference antitumor 5-flourouracil against the SW480, HCT116, and MCF-7 tumor cell lines. In conclusion, a number of the prepared 1,2,3-thia- or 1,2,3-selenadiazole compounds showed promising antifungal, antibacterial, and in vitro antitumor activities. Further investigations are required to explore the mechanism by which active compound are inducing their cytotoxicity.
Archives of Pharmacal Research | 2013
Nizar M. Mhaidat; Amjad M. Qandil; Qosay Al-Balas; Mohammad A. Hassan; Saied A. Jaradat; Ahmad Matalkah; Rick T. Thorne
To examine the antitumor activity of a new derivative of ciprofloxacin called methoxyphenylcipro (CMPP). Cell viability was assessed using the MTT assay and apoptotic cells and reactive oxygen species were evaluated using flow cytometry. Results revealed that CMPP induces antiproliferative activity against breast cancer cells and melanoma and to a lesser extent against colorectal cancer cells. Interestingly, compared to ciprofloxacin, CMPP-induced a selective cytotoxicity against human cancer cells but not human normal fibroblasts. The potential of CMPP to inhibit cellular growth in MD-MB-486 breast cancer cells and MV3 melanoma cells was largely due to induction of caspase-dependent apoptosis, as confirmed by caspase-3 activation and cleavage of its substrate PARP. In addition, results indicated that CMPP-induced apoptosis is mediated by generation of reactive oxygen species. These findings revealed that CMPP has a selective antitumor activity against cancer cells and warrants further clinical evaluation.
Pharmaceuticals | 2018
Ammar Almaaytah; Mohammed T Qaoud; Gubran Khalil Mohammed; Ahmad Abualhaijaa; Daniel Knappe; Ralf Hoffmann; Qosay Al-Balas
The recent upsurge of multidrug resistant bacteria (MDRB) among global communities has become one of the most serious challenges facing health professionals and the human population worldwide. Cationic ultrashort antimicrobial peptides (USAMPs) are a promising group of molecules that meet the required criteria of novel antimicrobial drug development. UP-5, a novel penta-peptide, displayed significant antimicrobial activities against various standard and clinical isolates of MDRB. UP-5 displayed MICs values within the range of (10–15 μM) and (55–65 μM) against Gram-positive and Gram-negative bacteria, respectively. Furthermore, UP-5 displayed antibiofilm activity with minimum biofilm eradication concentration (MBEC) value as equal to twofold higher than MIC value. At the same inhibitory concentrations, UP-5 exhibited very low or negligible toxicity toward human erythrocytes and mammalian cells. Combining UP-5 with conventional antibiotics led to a synergistic or additive mode of action that resulted in the reduction of the MIC values for some of the antibiotics by 99.7% along a significant drop in MIC values of the peptide. The stability profile of UP-5 was evaluated in full mouse plasma and serum with results indicating a more stable pattern in plasma. The present study indicates that USAMPs are promising antimicrobial agents that can avoid the negative characteristics of conventional antimicrobial peptides. Additionally, USAMPs exhibit good to moderate activity against MDRB, negligible toxicity, and synergistic outcomes in combination with conventional antimicrobial agents.