Quan-wen Jin
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quan-wen Jin.
Genetics | 2005
Quan-wen Jin; Mian Zhou; Andrea Bimbo; Mohan K. Balasubramanian; Dannel McCollum
In the fission yeast Schizosaccharomyces pombe the septation initiation network (SIN) is required for stabilization of the actomyosin ring in late mitosis as well as for ring constriction and septum deposition. In a genetic screen for suppressors of the SIN mutant sid2-250, we isolated a mutation, ace2-35, in the transcription factor Ace2p. Both ace2Δ and ace2-35 show defects in cell separation, and both can rescue the growth defects of some SIN mutants at low restrictive temperatures, where the SIN single mutants lyse at the time of cytokinesis. By detailed analysis of the formation and constriction of the actomyosin ring and septum in the sid2-250 mutant at low restrictive temperatures, we show that the lysis phenotype of the sid2-250 mutant is likely due to a weak cell wall and septum combined with enzymatic activity of septum-degrading enzymes. Consistent with the recent findings that Ace2p controls transcription of genes involved in cell separation, we show that disruption of some of these genes can also rescue sid2-250 mutants. Consistent with SIN mutants having defects in septum formation, many SIN mutants can be rescued at the low restrictive temperature by the osmotic stabilizer sorbitol. The small GTPase Rho1 is known to promote cell wall formation, and we find that Rho1p expressed from a multi-copy plasmid can also rescue sid2-250 at the low restrictive temperature. Together these results suggest that the SIN has a role in promoting proper cell wall formation at the division septa.
Eukaryotic Cell | 2003
Quan-wen Jin; Dannel McCollum
ABSTRACT Cytokinesis in the fission yeast Schizosaccharomyces pombe is regulated by a signaling pathway termed the septation initiation network (SIN). The SIN is essential for initiation of actomyosin ring constriction and septum formation. In a screen to search for mutations that can rescue the sid2-250 SIN mutant, we obtained scw1-18. Both the scw1-18 mutant and the scw1 deletion mutant (scw1Δ mutant), have defects in cell separation. Both the scw1-18 and scw1Δ mutations rescue the growth defects of not just the sid2-250 mutant but also the other temperature-sensitive SIN mutants. Other cytokinesis mutants, such as those defective for actomyosin ring formation, are not rescued by scw1Δ. scw1Δ does not seem to rescue the SIN by restoring SIN signaling defects. However, scw1Δ may function downstream of the SIN to promote septum formation, since scw1Δ can rescue the septum formation defects of the cps1-191β-1,3-glucan synthase mutant, which is required for synthesis of the primary septum.
Chromosoma | 1998
Josef Loidl; Quan-wen Jin; Michael F. Jantsch
Abstract. Meiotic pairing and segregation were studied in three different heterozygous reciprocal translocation strains of the baker’s yeast, Saccharomyces cerevisiae. Pachytene translocation quadrivalents were identified by a combination of immunofluorescence and fluorescence in situ hybridization and the karyotypes of meiotic products were determined by pulsed-field gel electrophoresis. The translocations differed with respect to the relative sizes of the chromosomes involved and the positions of translocation breakpoints, and produced translocation quadrivalents of widely different shapes. This allowed us to study the influence of the morphology of quadrivalents on their segregation behaviour. In all cases alternate predominated over adjacent segregation. 3:1 disjunction of chromosomes was more frequent when translocation breakpoints were close to the centromeres. If a translocation breakpoint was distant from the centromere, the occurrence of an intervening chiasma influenced the pattern of segregation. In general, quadrivalent formation and segregation resembled the behaviour of translocation heterozygotes in most higher eukaryotes. We therefore conclude that, although chromosome condensation does not occur in yeast metaphase, centromere orientation and chromosome disjunction are governed in a way similar to that of higher eukaryotes.
Molecular Biology of the Cell | 2010
Wen-zhu Li; Zhi-yong Yu; Peng-fei Ma; Yamei Wang; Quan-wen Jin
By characterizing the fission yeast Dma1s function during meiosis, we revealed that Dma1 is required for spore formation, while it is dispensable for fidelity of nuclear divisions. We also found that Dma1 is functionally related to SIN pathway and meiosis-specific kinase Slk1 during sporulation.
Journal of Cell Science | 2017
Yinghui Chen; Gao-yuan Wang; Hao-chao Hao; Chun-jiang Chao; Yamei Wang; Quan-wen Jin
ABSTRACT GFP-binding protein (or GBP) has been recently developed in various systems and organisms as an efficient tool to purify GFP-fusion proteins. Due to the high affinity between GBP and GFP or GFP variants, this GBP-based approach is also ideally suited to alter the localization of functional proteins in live cells. In order to facilitate the wide use of the GBP-targeting approach in the fission yeast Schizosaccharomyces pombe, we developed a set of pFA6a-, pJK148- and pUC119-based vectors containing GBP- or GBP–mCherry-coding sequences and variants of inducible nmt1 or constitutive adh1 promoters that result in different levels of expression. The GBP or GBP–mCherry fragments can serve as cassettes for N- or C-terminal genomic tagging of genes of interest. We illustrated the application of these vectors in the construction of yeast strains with Dma1 or Cdc7 tagged with GBP–mCherry and efficient targeting of Dma1– or Cdc7–GBP–mCherry to the spindle pole body by Sid4–GFP. This series of vectors should help to facilitate the application of the GBP-targeting approach in manipulating protein localization and the analysis of gene function in fission yeast, at the level of single genes, as well as at a systematic scale. Summary: A set of vectors containing GBP- or GBP–mCherry-coding sequences and variants of inducible nmt1 or constitutive adh1 promoters were constructed. They should allow easier artificial manipulation of protein localization in fission yeast.
Journal of Cell Science | 2013
Zhi yong Yu; Meng ting Zhang; Gao yuan Wang; Dan Xu; Daniel Keifenheim; Alejandro Franco; José Cansado; Hirohisa Masuda; Nicholas Rhind; Yamei Wang; Quan-wen Jin
Summary Cytokinesis involves temporally and spatially coordinated action of the cell cycle, cytoskeletal and membrane systems to achieve separation of daughter cells. The septation initiation network (SIN) and mitotic exit network (MEN) signaling pathways regulate cytokinesis and mitotic exit in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. Previously, we have shown that in fission yeast, the nucleolar protein Dnt1 negatively regulates the SIN pathway in a manner that is independent of the Cdc14-family phosphatase Clp1/Flp1, but how Dnt1 modulates this pathway has remained elusive. By contrast, it is clear that its budding yeast relative, Net1/Cfi1, regulates the homologous MEN signaling pathway by sequestering Cdc14 phosphatase in the nucleolus before mitotic exit. In this study, we show that dnt1+ positively regulates G2/M transition during the cell cycle. By conducting epistasis analyses to measure cell length at septation in double mutant (for dnt1 and genes involved in G2/M control) cells, we found a link between dnt1+ and wee1+. Furthermore, we showed that elevated protein levels of the mitotic inhibitor Wee1 kinase and the corresponding attenuation in Cdk1 activity is responsible for the rescuing effect of dnt1&Dgr; on SIN mutants. Finally, our data also suggest that Dnt1 modulates Wee1 activity in parallel with SCF-mediated Wee1 degradation. Therefore, this study reveals an unexpected missing link between the nucleolar protein Dnt1 and the SIN signaling pathway, which is mediated by the Cdk1 regulator Wee1 kinase. Our findings also define a novel mode of regulation of Wee1 and Cdk1, which is important for integration of the signals controlling the SIN pathway in fission yeast.
Cell Cycle | 2013
Lubos Cipak; Sneha Gupta; Iva Rajovic; Quan-wen Jin; Dorothea Anrather; Gustav Ammerer; Dannel McCollum; Juraj Gregan
Although the sterile 20 (Ste20) serine/threonine protein kinase was originally identified as a component of the S. cerevisiae mating pathway, it has homologs in higher eukaryotes and is part of a larger family of Ste20-like kinases. Ste20-like kinases are involved in multiple cellular processes, such as cell growth, morphogenesis, apoptosis and immune response. Carrying out such a diverse array of biological functions requires numerous regulatory inputs and outputs in the form of protein-protein interactions and post-translational modifications. Hence, a thorough knowledge of Ste20-like kinase binding partners and phosphorylation sites will be essential for understanding the various roles of these kinases. Our recent study revealed that Schizosaccharomyces pombe Nak1 (a conserved member of the GC-kinase sub-family of Ste20-like kinases) is in a complex with the leucine-rich repeat-containing protein Sog2. Here, we show a novel and unexpected interaction between the Nak1-Sog2 kinase complex and Casein kinase 2 (Cka1, Ckb1 and Ckb2) using tandem-affinity purification followed by mass spectrometric analysis. In addition, we identify unique phosphosites on Nak1, Sog2 and the catalytic subunit of casein kinase 2, Cka1. Given the conserved nature of these kinases, we expect this work will shed light on the functions of these proteins both in yeast and higher eukaryotes.
Molecular Biology of the Cell | 2012
Yamei Wang; Wen-zhu Li; Alyssa E. Johnson; Zhou-qing Luo; Xue-li Sun; Anna Feoktistova; W. Hayes McDonald; Ian X. McLeod; John R. Yates; Kathleen L. Gould; Dannel McCollum; Quan-wen Jin
The interaction between Dma1 and Dnt1 in fission yeast is characterized. The results show that, similar to its homologue Chfr in higher eukaryotes, Dma1 in fission yeast can also affect factors required for microtubule nucleation and spindle formation at early mitosis.
Yeast | 2015
Yinghui Chen; Lihua Chen; Ke An; Yamei Wang; Quan-wen Jin
We describe here the development of a set of plasmid vectors that allow simple, efficient and economical switching of a ura4+ module in existing Schizosaccharomyces pombe strains to any of the three routinely used antibiotic marker cassettes, kanMX6, hphMX6 and natMX6. In principle, the applications of this system can also be extended to switching ura4+ for additional MX6 module‐based cassettes, such as bleMX6, as long as the antibiotic marker has been cloned into an ura4+ module‐switching vector. We illustrate the application of this set of vectors in exchange of the ura4+ marker in existing strains with three antibiotic marker cassettes with high efficiency. Copyright
Journal of Cell Science | 2018
Cui Qiu; Yuan-yuan Yi; Rafael Lucena; Meng-juan Wu; Jia-hao Sun; Xi Wang; Quan-wen Jin; Yamei Wang
ABSTRACT The key cyclin-dependent kinase Cdk1 (Cdc2) promotes irreversible mitotic entry, mainly by activating the phosphatase Cdc25 while suppressing the tyrosine kinase Wee1. Wee1 needs to be downregulated at the onset of mitosis to ensure rapid activation of Cdk1. In human somatic cells, one mechanism of suppressing Wee1 activity is mediated by ubiquitylation-dependent proteolysis through the Skp1/Cul1/F-box protein (SCF) ubiquitin E3 ligase complex. This mechanism is believed to be conserved from yeasts to humans. So far, the best-characterized human F-box proteins involved in recognition of Wee1 are β-TrCP (BTRCP) and Tome-1 (CDCA3). Although fission yeast Wee1 was the first identified member of its conserved kinase family, the F-box proteins involved in recognition and ubiquitylation of Wee1 have not been identified in this organism. In this study, our screen using Wee1–Renilla luciferase as the reporter revealed that two F-box proteins, Pof1 and Pof3, are required for downregulating Wee1 and are possibly responsible for recruiting Wee1 to SCF. Our genetic analyses supported a functional relevance between Pof1 and Pof3 and the rate of mitotic entry, and Pof3 might play a major role in this process. Summary: Wee1 stability in fission yeast is controlled by F-box proteins Pof3 and Pof1.