Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Quan Zhao is active.

Publication


Featured researches published by Quan Zhao.


Nature Structural & Molecular Biology | 2009

PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing.

Quan Zhao; Gerhard Rank; Yuen T Tan; Haitao Li; Robert L. Moritz; Richard J. Simpson; Loretta Cerruti; David J. Curtis; Dinshaw J. Patel; C. David Allis; John M. Cunningham; Stephen M. Jane

Mammalian gene silencing is established through methylation of histones and DNA, although the order in which these modifications occur remains contentious. Using the human β-globin locus as a model, we demonstrate that symmetric methylation of histone H4 arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for subsequent DNA methylation. H4R3me2s serves as a direct binding target for the DNA methyltransferase DNMT3A, which interacts through the ADD domain containing the PHD motif. Loss of the H4R3me2s mark through short hairpin RNA–mediated knockdown of PRMT5 leads to reduced DNMT3A binding, loss of DNA methylation and gene activation. In primary erythroid progenitors from adult bone marrow, H4R3me2s marks the inactive methylated globin genes coincident with localization of PRMT5. Our findings define DNMT3A as both a reader and a writer of repressive epigenetic marks, thereby directly linking histone and DNA methylation in gene silencing.


Cancer Cell | 2011

Targeting of the Tumor Suppressor GRHL3 by a miR-21-Dependent Proto-Oncogenic Network Results in PTEN Loss and Tumorigenesis

Charbel Darido; Smitha R. Georgy; Tomasz Wilanowski; Sebastian Dworkin; Alana Auden; Quan Zhao; Gerhard Rank; Seema Srivastava; Moira Finlay; Anthony T. Papenfuss; Pier Paolo Pandolfi; Richard B. Pearson; Stephen M. Jane

Despite its prevalence, the molecular basis of squamous cell carcinoma (SCC) remains poorly understood. Here, we identify the developmental transcription factor Grhl3 as a potent tumor suppressor of SCC in mice, and demonstrate that targeting of Grhl3 by a miR-21-dependent proto-oncogenic network underpins SCC in humans. Deletion of Grhl3 in adult epidermis evokes loss of expression of PTEN, a direct GRHL3 target, resulting in aggressive SCC induced by activation of PI3K/AKT/mTOR signaling. Restoration of Pten expression completely abrogates SCC formation. Reduced levels of GRHL3 and PTEN are evident in human skin, and head and neck SCC, associated with increased expression of miR-21, which targets both tumor suppressors. Our data define the GRHL3-PTEN axis as a critical tumor suppressor pathway in SCC.


Developmental Cell | 2010

Epidermal Wound Repair Is Regulated by the Planar Cell Polarity Signaling Pathway

Jacinta Caddy; Tomasz Wilanowski; Charbel Darido; Sebastian Dworkin; Stephen B. Ting; Quan Zhao; Gerhard Rank; Alana Auden; Seema Srivastava; Tony Papenfuss; Jennifer N. Murdoch; Patrick O. Humbert; Nidal Boulos; Thomas Weber; Jian Zuo; John M. Cunningham; Stephen M. Jane

The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor Grhl3, interact genetically, exhibiting failed wound healing, neural tube defects, and disordered cochlear polarity. Using phylogenetic analysis, ChIP, and gene expression in Grhl3(-)(/-) mice, we identified RhoGEF19, a homolog of a RhoA activator involved in PCP signaling in Xenopus, as a direct target of GRHL3. Knockdown of Grhl3 or RhoGEF19 in keratinocytes induced defects in actin polymerization, cellular polarity, and wound healing, and re-expression of RhoGEF19 rescued these defects in Grhl3-kd cells. These results define a role for Grhl3 in PCP signaling and broadly implicate this pathway in epidermal repair.


Blood | 2010

Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression.

Gerhard Rank; Loretta Cerruti; Richard J. Simpson; Robert L. Moritz; Stephen M. Jane; Quan Zhao

Defining the molecular mechanisms underpinning fetal (gamma) globin gene silencing may provide strategies for reactivation of gamma-gene expression, a major therapeutic objective in patients with beta-thalassemia and sickle cell disease (SCD). We have previously demonstrated that symmetric methylation of histone H4 Arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for recruitment of the DNA methyltransferase DNMT3A to the gamma-promoter, and subsequent DNA methylation and gene silencing. Here we show in an erythroid cell line, and in primary adult erythroid progenitors that PRMT5 induces additional repressive epigenetic marks at the gamma-promoter through the assembly of a multiprotein repressor complex containing the histone modifying enzymes SUV4-20h1, casein kinase 2alpha (CK2alpha), and components of the nucleosome remodeling and histone deacetylation complex. Expression of a mutant form of PRMT5 lacking methyltransferase activity or shRNA-mediated knockdown of SUV4-20h1 resulted in loss of complex binding to the gamma-promoter, reversal of both histone and DNA repressive epigenetic marks, and increased gamma-gene expression. The repressive H4K20me3 mark induced by SUV4-20h1 is enriched on the gamma-promoter in erythroid progenitors from adult bone marrow compared with cord blood, suggesting developmental specificity. These studies define coordinated epigenetic events linked to fetal globin gene silencing, and provide potential therapeutic targets for the treatment of beta-thalassemia and SCD.


Molecular and Cellular Biology | 2006

Functional Interaction of CP2 with GATA-1 in the Regulation of Erythroid Promoters

Francesca Bosè; Cristina Fugazza; Maura Casalgrandi; Alessia Capelli; John M. Cunningham; Quan Zhao; Stephen M. Jane; Sergio Ottolenghi; Antonella Ronchi

ABSTRACT We observed that binding sites for the ubiquitously expressed transcription factor CP2 were present in regulatory regions of multiple erythroid genes. In these regions, the CP2 binding site was adjacent to a site for the erythroid factor GATA-1. Using three such regulatory regions (from genes encoding the transcription factors GATA-1, EKLF, and p45 NF-E2), we demonstrated the functional importance of the adjacent CP2/GATA-1 sites. In particular, CP2 binds to the GATA-1 HS2 enhancer, generating a ternary complex with GATA-1 and DNA. Mutations in the CP2 consensus greatly impaired HS2 activity in transient transfection assays with K562 cells. Similar results were obtained by transfection of EKLF and p45 NF-E2 mutant constructs. Chromatin immunoprecipitation with K562 cells showed that CP2 binds in vivo to all three regulatory elements and that both GATA-1 and CP2 were present on the same GATA-1 and EKLF regulatory elements. Adjacent CP2/GATA-1 sites may represent a novel module for erythroid expression of a number of genes. Additionally, coimmunoprecipitation and glutathione S-transferase pull-down experiments demonstrated a physical interaction between GATA-1 and CP2. This may contribute to the functional cooperation between these factors and provide an explanation for the important role of ubiquitous CP2 in the regulation of erythroid genes.


Cancer Research | 2015

Heterochromatin protein HP1γ promotes colorectal cancer progression and is regulated by miR-30a

Ming Liu; Feifei Huang; Dan Zhang; Junyi Ju; Xiao-bin Wu; Ying Wang; Yadong Wang; Yupeng Wu; Min Nie; Zhuchen Li; Chi Ma; Xi Chen; Jin-Yong Zhou; Ren Xiang Tan; Bo-Lin Yang; Ke Zen; Chen-Yu Zhang; Yu-Gen Chen; Quan Zhao

Colorectal cancer pathogenesis remains incompletely understood. Here, we report that the heterochromatin protein HP1γ is upregulated commonly in human colorectal cancer, where it promotes cell proliferation in vitro and in vivo. Gene-expression and promoter-binding experiments demonstrated that HP1γ directly regulated CDKN1A (p21(Waf1/Cip1)) in a manner associated with methylation of histone H3K9 on its promoter. We identified miR-30a as a tumor-suppressive microRNA that targets HP1γ in vitro and in vivo to specifically suppress the growth of colorectal cancer in mouse xenograft models. MiR-30a was widely downregulated in primary human colorectal cancer tissues, where its expression correlated inversely with high levels of HP1γ protein. Our results identify a new miR-30a/HP1γ/p21 regulatory axis controlling colorectal cancer development, which may offer prognostic and therapeutic opportunities.


PLOS ONE | 2012

Synergistic Effect of SRY and Its Direct Target, WDR5, on Sox9 Expression

Zhen Xu; Xinxing Gao; Yinghong He; Junyi Ju; Miaomiao Zhang; Ronghua Liu; Yupeng Wu; Chunyan Ma; Chi Ma; Zhaoyu Lin; Xingxu Huang; Quan Zhao

SRY is a sex-determining gene that encodes a transcription factor, which triggers male development in most mammals. The molecular mechanism of SRY action in testis determination is, however, poorly understood. In this study, we demonstrate that WDR5, which encodes a WD-40 repeat protein, is a direct target of SRY. EMSA experiments and ChIP assays showed that SRY could bind to the WDR5 gene promoter directly. Overexpression of SRY in LNCaP cells significantly increased WDR5 expression concurrent with histone H3K4 methylation on the WDR5 promoter. To specifically address whether SRY contributes to WDR5 regulation, we introduced a 4-hydroxy-tamoxifen-inducible SRY allele into LNCaP cells. Conditional SRY expression triggered enrichment of SRY on the WDR5 promoter resulting in induction of WDR5 transcription. We found that WDR5 was self regulating through a positive feedback loop. WDR5 and SRY interacted and were colocalized in cells. In addition, the interaction of WDR5 with SRY resulted in activation of Sox9 while repressing the expression of β-catenin. These results suggest that, in conjunction with SRY, WDR5 plays an important role in sex determination.


Nucleic Acids Research | 2014

Human fetal globin gene expression is regulated by LYAR

Junyi Ju; Ying Wang; Ronghua Liu; Yichong Zhang; Zhen Xu; Yadong Wang; Yupeng Wu; Ming Liu; Loretta Cerruti; Fengwei Zou; Chi Ma; Ming Fang; Ren Xiang Tan; Stephen M. Jane; Quan Zhao

Human globin gene expression during development is modulated by transcription factors in a stage-dependent manner. However, the mechanisms controlling the process are still largely unknown. In this study, we found that a nuclear protein, LYAR (human homologue of mouse Ly-1 antibody reactive clone) directly interacted with the methyltransferase PRMT5 which triggers the histone H4 Arg3 symmetric dimethylation (H4R3me2s) mark. We found that PRMT5 binding on the proximal γ-promoter was LYAR-dependent. The LYAR DNA-binding motif (GGTTAT) was identified by performing CASTing (cyclic amplification and selection of targets) experiments. Results of EMSA and ChIP assays confirmed that LYAR bound to a DNA region corresponding to the 5′-untranslated region of the γ-globin gene. We also found that LYAR repressed human fetal globin gene expression in both K562 cells and primary human adult erythroid progenitor cells. Thus, these data indicate that LYAR acts as a novel transcription factor that binds the γ-globin gene, and is essential for silencing the γ-globin gene.


Haematologica | 2012

The role of WDR5 in silencing human fetal globin gene expression.

Zhen Xu; Yinghong He; Junyi Ju; Gerhard Rank; Loretta Cerruti; Chi Ma; Richard J. Simpson; Robert L. Moritz; Stephen M. Jane; Quan Zhao

Background Histone H3 lysine 4 (K4) methylation has been linked with transcriptional activity in mammalian cells. The WD40-repeat protein, WDR5, is an essential component of the MLL complex that induces histone H3 K4 methylation, but the role of WDR5 in human globin gene regulation has not yet been established. Design and Methods To study the role of WDR5 in human globin gene regulation, we performed knockdown experiments in both K562 cells and primary human bone marrow erythroid progenitor cells (BMC). The effects of WDR5 knockdown on γ-globin gene expression were determined. Biochemical approaches were also employed to investigate WDR5 interaction molecules. Chromosomal marks in the globin locus were analyzed by ChIP. Results We found that WDR5 interacted with protein arginine methyltransferase 5 (PRMT5), a known repressor of γ-globin gene expression, and was essential for generating tri-methylated H3K4 (H3K4me3) at the γ-globin promoter in K562 cells. Enforced expression of WDR5 in K562 cells reduced γ-globin gene expression, whereas knockdown of WDR5 increased γ-globin gene expression in both K562 cells and primary human bone marrow erythroid progenitor cells. Consistent with this, both histone H3 and H4 acetylation at the γ-globin promoter were increased, while histone H4R3 and H3K9 methylation were decreased, in WDR5 knockdown cells compared to controls. We found that WDR5 interacted with HDAC1 and a PHD domaincontaining protein, ING2 (inhibitor of growth), an H3K4me3 mark reader, to enhance γ-globin gene transcriptional repression. In human BMC, levels of WDR5 were highly enriched on the γ-promoter relative to levels on other globin promoters and compared to the γ-promoter in cord blood erythroid progenitors, suggesting that WDR5 is important in the developmental globin gene expression program. Conclusions Our data are consistent with a model in which WDR5 binds the γ-globin promoter in a PRMT5-dependent manner; H3K4me3 induced at the γ-globin promoter by WDR5 may result in the recruitment of the ING2-associated HDAC1 component and consequent silencing of γ-globin gene expression.


Journal of Translational Medicine | 2013

Induction of human fetal hemoglobin expression by adenosine-2’,3’-dialdehyde

Yinghong He; Gerhard Rank; Miaomiao Zhang; Junyi Ju; Ronghua Liu; Zhen Xu; Fiona Brown; Loretta Cerruti; Chi Ma; Ren Xiang Tan; Stephen M. Jane; Quan Zhao

BackgroundPharmacologic reactivation of fetal hemoglobin expression is a promising strategy for treatment of sickle cell disease and β-thalassemia. The objective of this study was to investigate the effect of the methyl transferase inhibitor adenosine-2’,3’-dialdehyde (Adox) on induction of human fetal hemoglobin (HbF) in K562 cells and human hematopoietic progenitor cells.MethodsExpression levels of human fetal hemoglobin were assessed by northern blot analysis and Real-time PCR. HbF and adult hemoglobin (HbA) content were analyzed using high-performance liquid chromatography (HPLC). DNA methylation levels on human gamma-globin gene promoters were determined using Bisulfite sequence analysis. Enrichment of histone marks on genes was assessed by chromosome immunoprecipitation (ChIP).ResultsAdox induced γ-globin gene expression in both K562 cells and in human bone marrow erythroid progenitor cells through a mechanism potentially involving inhibition of protein arginine methyltransferase 5 (PRMT5).ConclusionsThe ability of methyl transferase inhibitors such as Adox to efficiently reactivate fetal hemoglobin expression suggests that these agents may provide a means of reactivating fetal globin expression as a therapeutic option for treating sickle cell disease and β-thalassemia.

Collaboration


Dive into the Quan Zhao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerhard Rank

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Cunningham

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge