Quanfeng Liang
Shandong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quanfeng Liang.
Microbial Cell Factories | 2012
Mingji Li; Junshu Wang; Yanping Geng; Yikui Li; Qian Wang; Quanfeng Liang; Qingsheng Qi
BackgroundFor metabolic engineering, many rate-limiting steps may exist in the pathways of accumulating the target metabolites. Increasing copy number of the desired genes in these pathways is a general method to solve the problem, for example, the employment of the multi-copy plasmid-based expression system. However, this method may bring genetic instability, structural instability and metabolic burden to the host, while integrating of the desired gene into the chromosome may cause inadequate transcription or expression. In this study, we developed a strategy for obtaining gene overexpression by engineering promoter clusters consisted of multiple core-tac- promoters (MCPtac s) in tandem.ResultsThrough a uniquely designed in vitro assembling process, a series of promoter clusters were constructed. The transcription strength of these promoter clusters showed a stepwise enhancement with the increase of tandem repeats number until it reached the critical value of five. Application of the MCPtac s promoter clusters in polyhydroxybutyrate (PHB) production proved that it was efficient. Integration of the phaCAB genes with the 5CPtac s promoter cluster resulted in an engineered E.coli that can accumulate 23.7% PHB of the cell dry weight in batch cultivation.ConclusionsThe transcription strength of the MCPtac s promoter cluster can be greatly improved by increasing the tandem repeats number of the core-tac-promoter. By integrating the desired gene together with the MCPtac s promoter cluster into the chromosome of E. coli, we can achieve high and stale overexpression with only a small size. This strategy has an application potential in many fields and can be extended to other bacteria.
Applied and Environmental Microbiology | 2011
Quan Chen; Qian Wang; Guoqing Wei; Quanfeng Liang; Qingsheng Qi
ABSTRACT The industrial production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has been hindered by high cost and a complex control strategy caused by the addition of propionate. In this study, based on analysis of the PHBV biosynthesis process, we developed a PHBV biosynthetic pathway from a single unrelated carbon source via threonine biosynthesis in Escherichia coli. To accomplish this, we (i) overexpressed threonine deaminase, which is the key factor for providing propionyl-coenzyme A (propionyl-CoA), from different host bacteria, (ii) removed the feedback inhibition of threonine by mutating and overexpressing the thrABC operon in E. coli, and (iii) knocked out the competitive pathways of catalytic conversion of propionyl-CoA to 3-hydroxyvaleryl-CoA. Finally, we constructed a series of strains and mutants which were able to produce the PHBV copolymer with differing monomer compositions in a modified M9 medium supplemented with 20 g/liter xylose. The largest 3-hydroxyvalerate fraction obtained in the copolymer was 17.5 mol%.
Metabolic Engineering | 2014
Qianqian Zhuang; Qian Wang; Quanfeng Liang; Qingsheng Qi
Polyhydroxyalkanoates that contain the medium-chain-length monomers (mcl-PHAs) have a wide range of applications owing to their superior physical and mechanical properties. A challenge to synthesize such mcl-PHAs from unrelated and renewable sources is exploiting the efficient metabolic pathways that lead to the formation of precursor (R)-3-hydroxyacyl-CoA. Here, by engineering the reversed fatty acid β-oxidation cycle, we were able to synthesize mcl-PHAs in Escherichia coli directly from glucose. After deletion of the major thioesterases, the engineered E. coli produced 6.62wt% of cell dry weight mcl-PHA heteropolymers. Furthermore, when a low-substrate-specificity PHA synthase from Pseudomonas stutzeri 1317 was employed, recombinant E. coli synthesized 12.10wt% of cell dry weight scl-mcl PHA copolymers, of which 21.18mol% was 3-hydroxybutyrate and 78.82mol% was medium-chain-length monomers. The reversed fatty acid β-oxidation cycle offered an efficient metabolic pathway for mcl-PHA biosynthesis in E. coli and can be further optimized.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2009
Björn D. Heijstra; Franz B. Pichler; Quanfeng Liang; Razel G. Blaza; Susan J. Turner
Extracellular DNA can play a structural role in the microbial environment. Here evidence is presented that an environmental isolate of Acidovoraxtemperans utilises extracellular DNA for intercellular and cell-surface attachment and that Type IV pili and electrostatic interactions play a role in this interaction. Preliminary attempts to isolate and purify extracellular polysaccharides from A. temperans strain CB2 yielded significant amounts of DNA raising the question of whether this molecule was present as a structural component in the extracellular matrix. The role of DNA in attachment was indicated by experiments in which the addition of DNase to liquid medium inhibited the attachment of Acidovorax to glass wool. A Tn5 insertional mutant, lacking Type IV pili, was unable to initiate attachment. Addition of DNase caused rapid detachment of bound cells, but no detachment occurred when proteinase, RNase or inactivated DNase were used. Addition of MgCl2 also caused significant detachment, supporting the possible mechanistic role of electrostatic interactions in the attachment process. Although attachment was apparent in early to mid-log phase growth, surprisingly DNA was not detected in the culture supernatant until late stationary phase and coincided with an appreciable loss of cell viability. This suggests that during log-phase growth attachment is mediated by eDNA that is released in low quantities and/or is highly localised within the extracellular matrix and also that stationary phase DNA release through widespread cell lysis may be a separate and unrelated event.
Bioresource Technology | 2011
Zhen Kang; Lili Du; Junhua Kang; Yang Wang; Qian Wang; Quanfeng Liang; Qingsheng Qi
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.
Applied Microbiology and Biotechnology | 2013
Qian Wang; Qianqian Zhuang; Quanfeng Liang; Qingsheng Qi
Polyhydroxyalkanoates (PHAs) that contain varied monomers with different chain lengths/structures were normally synthesized when a structurally-related precursor was present. The biosynthesis of PHAs from unrelated carbon sources in microorganisms including Escherichia coli met many challenges in the past. Recently, with the development of metabolic engineering and synthetic biology, the production of PHAs from unrelated carbon sources obtained a breakthrough. Polyesters containing 2-hydroxypropionate, 3-hydroxypropionate, 4-hydroxybutyrate, 3-hydroxyvalarate, and medium-chain-length 3-hydroxyalkanoate monomers can all be synthesized in E. coli by integrating exogenous or endogenous pathways and/or genes. This review will summarize the progresses in this area. In addition, the strategies that lead to the production of PHAs with varied monomers and high polymer content in the cell are discussed.
Fems Microbiology Letters | 2014
Fangfang Li; Yang Wang; Kai Gong; Qian Wang; Quanfeng Liang; Qingsheng Qi
In the current study, the small RNA ryhB, which regulates the metabolism of iron in Escherichia coli, was constitutively expressed in engineered E. coli DALA. The resulting strain E. coli DALRA produced 16% more 5-aminolevulinic acid (ALA) than the parent strain E. coli DALA in batch fermentation. Meanwhile, we found that addition of iron in the medium increased heme formation and reduced ALA yield, whereas the presence of iron chelator in the medium decreased heme concentration and increased the ALA production efficiency (ALA yield per OD600). The qRT-PCR analysis showed that the mRNA levels of hemB and hemH were also decreased as well as the known RyhB target genes of acnAB, sdhAB, fumA, and cydAB in E. coli DALRA. These results indicated that small RNA can be used as a tool for regulating ALA accumulation in E. coli.
Microbiology | 2013
Junqiao Zhao; Qian Wang; Mingji Li; Björn D. Heijstra; Shengjun Wang; Quanfeng Liang; Qingsheng Qi
Toxin-antitoxin (TA) systems in Escherichia coli may play a role in biofilm formation, but the mechanism involved remains debatable. It is not known whether the TA systems are responsible for extracellular DNA (eDNA) in biofilms. In this study, we investigated the function of the hipBA TA system in biofilm formation by Escherichia coli strain BW25113. First, the deletion of the HipBA TA system in E. coli BW25113 significantly reduced the biofilm biomass without antibiotic stress. Second, treatment of the BW25113 biofilm with DNase I caused a major reduction in biofilm formation, whereas similar treatment of the hipA mutant biofilm had only a minor effect. Third, the inactivation of HipA reduced the level of eDNA present in biofilm formation, and addition of BW25113 genomic DNA stimulated biofilm formation for both the wild-type and hipA mutant. Fourth, the wild-type cells underwent significantly more cell lysis than the hipA mutant. These results suggest that hipA plays a significant role during biofilm development and that eDNA is an important structural component of E. coli BW25113 biofilms. Thus, the TA system may enhance biofilm formation through DNA release.
Biotechnology Advances | 2014
Quanfeng Liang; Qingsheng Qi
Engineering microorganisms capable of accumulating multiple products are sometimes attractive because they yield several advantages in balancing the in vivo metabolic flux and restoring the optimal cell physiology. With the development of metabolic engineering and synthetic biology, numerous strategies for minimizing the substrate waste, optimizing the product portfolios, and maximizing the product yield in co-production systems have been designed and applied. This paper reviewed the recent developments in this field and discussed the challenges that may be encountered during the scaling up of the co-production systems. Finally, the importance of product portfolios and biorefinery strategy of single-cell in co-production processes was proposed.
Scientific Reports | 2015
Quanfeng Liang; Fengyu Zhang; Yikui Li; Xu Zhang; Jiaojiao Li; Peng Yang; Qingsheng Qi
The phosphoenolpyruvate-dependent glucose-specific phosphotransferase system (PTSGlc) is the main glucose uptake pathway in Escherichia coli that affects both substrate assimilation and metabolism leading to the product formation. In this study, the effect of single PTSGlc mutation on cell growth and substrate consumption was investigated by knocking out the genes involved in the phosphotransfer cascade of the PTSGlc. In addition, the distribution of the metabolites of mutants was analyzed. Each mutant was confirmed to have different adaptability in the presence of both glucose and xylose with different ratios, and a substrate mixture with high xylose content can be completely consumed in short time when the ptsI mutant is employed. Finally, ptsH deletion was for the first time applied for succinate production due to its well performance under anaerobic condition. Strain YL104H, in which ptsH was deleted, exhibited considerably increased succinate yield under both aerobic and anaerobic conditions. The succinate titer and overall productivity reached 511.11 mM and 1.01 g/L/h after 60 h during the whole-phase fermentation in a mineral salt medium. The present results demonstrated the glucose and xylose co-utilization efficiency and the product yield and productivity can be significantly improved if a suitable PTSGlc deletion mutant was selected.