Quang Lam Truong
Kangwon National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quang Lam Truong.
Journal of Veterinary Medical Science | 2013
Quang Lam Truong; Taewon Seo; Byung-Il Yoon; Hyeon-Cheol Kim; Jeong Hee Han; Tae-Wook Hahn
ABSTRACT In 2008, 102 rodents and 24 stray cats from the areas around 9 pig farms in northeast South Korea were used to determine the prevalence of the following selected swine pathogens: ten viral pathogens [porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), rotavirus, classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), encephalomyocarditis virus (EMCV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine parvovirus (PPV), pseudorabies virus (PRV) and Japanese encephalitis virus (JEV)] and four bacterial pathogens (Brucella, Leptospira, Salmonella and Lawsonia intracellularis). In total, 1,260 tissue samples from 102 rodents and 24 stray cats were examined by specific PCR and RT-PCR assays, including tissue samples of the brain, tonsils, lungs, heart, liver, kidneys, spleen, small intestine, large intestine and mesenteric lymph nodes. The percentages of PCR-positive rodents for the porcine pathogens were as follows: 63.7% for Leptospira, 39.2% for Brucella, 6.8% for Salmonella, 15.7% for L. intracellularis, 14.7% for PCV2 and 3.9% for EMCV. The percentages of PCR-positive stray cats for the swine pathogens were as follows: 62.5% for Leptospira, 25% for Brucella, 12.5% for Salmonella, 12.5% for L. intracellularis and 4.2% for PEDV. These results may be helpful for developing control measures to prevent the spread of infectious diseases of pigs.
Clinical and Vaccine Immunology | 2014
Quang Lam Truong; Youngjae Cho; Abhijit Kashinath Barate; Suk Kim; Tae-Wook Hahn
ABSTRACT Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response.
Journal of Veterinary Science | 2015
Youngjae Cho; Yoon Mee Park; Abhijit Kashinath Barate; Soyeon Park; Hee Jeong Park; Mi Rae Lee; Quang Lam Truong; Jang Won Yoon; Iel Soo Bang; Tae-Wook Hahn
Salmonella enterica Gallinarum (SG) causes fowl typhoid (FT), a septicemic disease in avian species. We constructed deletion mutants lacking the stress sigma factor RpoS, the nitric oxide (NO)-detoxifying flavohemoglobin Hmp, and the SsrA/SsrB regulator to confirm the functions of these factors in SG. All gene products were fully functional in wild-type (WT) SG whereas mutants harboring single mutations or a combination of rpoS, hmp, and ssrAB mutations showed hypersusceptibility to H2O2, loss of NO metabolism, and absence of Salmonella pathogenicity island (SPI)-2 expression, respectively. A triple-deletion mutant, SGΔ3 (SGΔrpoSΔhmpΔssrAB), was evaluated for attenuated virulence and protection efficacy in two-week-old Lohmann layer chickens. The SGΔ3 mutant did not cause any mortality after inoculation with either 1 × 106 or 1 × 108 colony-forming units (CFUs) of bacteria. Significantly lower numbers of salmonellae were recovered from the liver and spleen of chickens inoculated with the SGΔ3 mutant compared to chickens inoculated with WT SG. Vaccination with the SGΔ3 mutant conferred complete protection against challenge with virulent SG on the chickens comparable to the group vaccinated with a conventional vaccine strain, SG9R. Overall, these results indicate that SGΔ3 could be a promising candidate for a live Salmonella vaccine against FT.
Fems Microbiology Letters | 2014
Abhijit Kashinath Barate; Youngjae Cho; Quang Lam Truong; Tae-Wook Hahn
The surface adhesin P97 mediates the adherence of Mycoplasma hyopneumoniae to swine cilia. Two reiterated repeats R1 and R2 are located at the C-terminus of P97. The purpose of this study was to evaluate the immunogenicity of Montanide adjuvant IMS 1113 plus soluble subunit proteins rR1, rR1R2 and their chimeric forms coupled with B subunit of the heat-labile enterotoxin of Escherichia coli (LTB). Each recombinant protein in this study was capable of eliciting anti-R1 specific humoral antibodies (IgG), mucosal antibodies (IgG and IgA) and IFN-γ production. The chimeric protein rLTBR1R2 elicited the quickest humoral antibody response among the recombinant proteins. Serum and bronchoalveolar lavage analysis revealed that each recombinant protein was capable of inducing both Th1 and Th2 responses. Importantly, all of the proteins induced an anti-R1-specific Th2-biased response in both humoral and mucosal compartments, similar to the response observed in a natural infection or vaccination process. These observations indicate that rR1, rR1R2, rLTBR1 and rLTBR1R2 with IMS 1113 might represent a promising subunit vaccine strategy against porcine enzootic pneumonia in pigs.
Vaccine | 2016
Quang Lam Truong; Youngjae Cho; Soyeon Park; Kiju Kim; Tae-Wook Hahn
We constructed double deletion (ΔcydCΔcydD and ΔcydCΔpurD) mutants from virulent Brucella abortus biovar 1 field isolate (BA15) by deleting the genes encoding an ATP-binding cassette-type transporter (cydC and cydD genes) and a phosphoribosylamine-glycine ligase (purD). Both BA15ΔcydCΔcydD and BA15ΔcydCΔpurD double-mutants exhibited significant attenuation of virulence when assayed in murine macrophages or in BALB/c mice. Both double-mutants were readily cleared from spleens by 4 weeks post-inoculation even when inoculated at the dose of 10(8) CFU per mouse. Moreover, the inoculated mice showed no splenomegaly, which indicates that the mutants are highly attenuated. Importantly, the attenuation of in vitro and in vivo growth did not impair the ability of these mutants to confer long-term protective immunity in mice against challenge with B. abortus strain 2308. Vaccination of mice with either mutant induced humoral and cell-mediated immune responses, and provided significantly better protection than commercial B. abortus strain RB51 vaccine. These results suggest that highly attenuated BA15ΔcydCΔcydD and BA15ΔcydCΔpurD mutants can be used effectively as potential live vaccine candidates against bovine brucellosis.
Microbiology | 2015
Quang Lam Truong; Youngjae Cho; Kiju Kim; Bokyoung Park; Tae-Wook Hahn
Brucella abortus attenuated strain RB51 vaccine (RB51) is widely used in prevention of bovine brucellosis. Although vaccination with this strain has been shown to be effective in conferring protection against bovine brucellosis, RB51 has several drawbacks, including residual virulence for animals and humans. Therefore, a safe and efficacious vaccine is needed to overcome these disadvantages. In this study, we constructed several gene deletion mutants (ΔcydC, ΔcydD and ΔpurD single mutants, and ΔcydCΔcydD and ΔcydCΔpurD double mutants) of RB51 with the aim of increasing the safety of the possible use of these mutants as vaccine candidates. The RB51ΔcydC, RB51ΔcydD, RB51ΔpurD, RB51ΔcydCΔcydD and RB51ΔcydCΔpurD mutants exhibited significant attenuation of virulence when assayed in murine macrophages in vitro or in BALB/c mice. A single intraperitoneal immunization with RB51ΔcydC, RB51ΔcydD, RB51ΔcydCΔcydD or RB51ΔcydCΔpurD mutants was rapidly cleared from mice within 3 weeks, whereas the RB51ΔpurD mutant and RB51 were detectable in spleens until 4 and 7 weeks, respectively. Vaccination with a single dose of RB51 mutants induced lower protective immunity in mice than did parental RB51. However, a booster dose of these mutants provided significant levels of protection in mice against challenge with either the virulent homologous B. abortus strain 2308 or the heterologous Brucella canis strain 26. In addition, these mutants were found to induce a mixed but T-helper-1-biased humoral and cellular immune response in immunized mice. These data suggest that immunization with a booster dose of attenuated RB51 mutants provides an attractive strategy to protect against either bovine or canine brucellosis.
Journal of Microbiology and Biotechnology | 2015
Youngjae Cho; Soyeon Park; Abhijit Kashinath Barate; Quang Lam Truong; Jang Hyuck Han; Cheong-Hwan Jung; Jang Won Yoon; Seongbeom Cho; Tae-Wook Hahn
Microbial Pathogenesis | 2015
Quang Lam Truong; Youngjae Cho; Abhijit Kashinath Barate; Suk Kim; Masahisa Watarai; Tae-Wook Hahn
Microbial Pathogenesis | 2016
Quang Lam Truong; Youngjae Cho; Soyeon Park; Bokyoung Park; Tae-Wook Hahn
Korean Journal of Veterinary Research | 2016
Kiju Kim; Yookyung Park; Bokyung Park; Quang Lam Truong; Soyeon Park; Jaehun Kim; Tae-Wook Hahn