Quanlei Zhu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quanlei Zhu.
Biomaterials | 2013
Xiuying Li; Shiyan Guo; Chunliu Zhu; Quanlei Zhu; Yong Gan; Jukka Rantanen; Ulrik Lytt Rahbek; Lars Hovgaard; Mingshi Yang
Chitosan nanoparticles (NC) have excellent capacity for protein entrapment, favorable epithelial permeability, and are regarded as promising nanocarriers for oral protein delivery. Herein, we designed and evaluated a class of core shell corona nanolipoparticles (CSC) to further improve the absorption through enhanced intestinal mucus penetration. CSC contains chitosan nanoparticles as a core component and pluronic F127-lipid vesicles as a shell with hydrophilic chain and polyethylene oxide PEO as a corona. These particles were developed by hydration of a dry pluronic F127-lipid film with NC suspensions followed by extrusion. Insulin nested inside CSC was well protected from enzymatic degradation. Compared with NC, CSC exhibited significantly higher efficiency of mucosal penetration and, consequently, higher cellular internalization of insulin in mucus secreting E12 cells. The cellular level of insulin after CSC treatment was 36-fold higher compared to treatment with free insulin, and 10-fold higher compared to NC. CSC significantly facilitated the permeation of insulin across the ileum epithelia, as demonstrated in an ex vivo study and an in vivo absorption study. CSC pharmacological studies in diabetic rats showed that the hypoglycemic effects of orally administrated CSC were 2.5-fold higher compared to NC. In conclusion, CSC is a promising oral protein delivery system to enhance the stability, intestinal mucosal permeability, and oral absorption of insulin.
International Journal of Pharmaceutics | 2013
Dan Chen; Dengning Xia; Xiuying Li; Quanlei Zhu; Hongzhen Yu; Chunliu Zhu; Yong Gan
Liposomes modified using cationic and hydrophilic nonionic polymers are 2 popular carriers for improving oral drug absorption. Cationic polymer-modified liposomes can adhere to the intestinal wall mucus (mucoadhesive type), while liposomes modified using hydrophilic nonionic polymers can penetrate across the mucus barrier (mucus-penetrating type). Chitosan-modified liposomes (CS-Lip, mucoadhesive type) and Pluronic(®) F127-modified liposomes (PF127-Lip, mucus-penetrating type) were engineered to investigate the differences between these mucoadhesive and mucus-penetrating systems in oral absorption of a poorly soluble drug, cyclosporine A (CyA). Stability of CS-Lip and PF127-Lip was studied in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The intestinal mucus adhesion or penetration of liposomes was studied by confocal laser scanning microcopy and fluorophotometry using coumarin 6 as the fluorescent probe. The oral absorption of CyA-loaded liposomes was also studied in Sprague-Dawley rats. In vitro and in vivo studies revealed that CS-Lip tended to aggregate in SIF, to be trapped by mucus, to remain mainly in the upper portion of the intestinal tract, and to show limited penetration ability. In contrast, PF127-Lip were more stable in the SIF and SGF, were found throughout the intestinal tract, and were able to penetrate the mucus layers to reach the epithelial surface. Pharmacokinetic analysis in rats showed that the Cmax and AUC0-t of PF127-Lip were 1.73- and 1.84-fold higher than those of CS-Lip, respectively (P<0.05). In conclusion, the stability and mucus-penetrating ability of PF127-Lip in the gastrointestinal tract rendered it more suitable than the mucoadhesive CS-Lip for oral delivery CyA.
European Journal of Pharmaceutics and Biopharmaceutics | 2013
Hongzhen Yu; Dengning Xia; Quanlei Zhu; Chunliu Zhu; Dan Chen; Yong Gan
Polymeric micelles provide a promising platform for improving oral absorption of poorly soluble drugs. However, improved understanding of how drug retention within the hydrophobic micelle core can reduce drug absorption is required. We designed supersaturated polymeric micelles (Super-PMs) to increase molecularly dissolved drug concentration and gain an insight into the effect of the degree of supersaturation on oral absorption of cyclosporine A (CsA) in rats. The drug release from Super-PMs increased with an increase in initial supersaturation degrees in micelles. The cellular uptake of coumarin-6 was reduced by the retention of drug in polymer micelles. The transport flux of CsA across Caco-2 monolayer was increased with initial supersaturation degrees of 0.81-3.53 (p < 0.05). However, increase in supersaturation to 5.64 actually resulted in decreased CsA transport. The same trend was observed in a rat in vivo absorption study, in which the highest bioavailability of 134.6 ± 24.7% (relative to a commercial product, Sandimmun Neoral®, p<0.01) was achieved when the supersaturation degree was 3.53. These results demonstrated that Super-PMs were a promising drug delivery system for compounds with low aqueous solubility. This study also provided an experimental proof for the hypothesis that moderately supersaturated formulations are valuable alternative to high supersaturation formulations, resulting in optimal in vivo performance, and the degree of supersaturation should be carefully controlled to optimize drug absorption.
Colloids and Surfaces B: Biointerfaces | 2016
Dengning Xia; Hongzhen Yu; Jianrong Zeng; Quanlei Zhu; Chunliu Zhu; Yong Gan
Our previous study demonstrated that the retention of drug in the hydrophobic core of Soluplus micelle greatly impeded drug absorption from gastrointestinal tract. Using supersaturated polymeric micelles can improve drug release, however, insufficient maintaining of supersaturation of drug is still unfavorable for drug absorption. Here, we report adding small amount of small molecule, sodium dodecyl sulfate (SDS), to Soluplus solution can form a Soluplus-SDS complex. This complex not only showed a higher solubilization capability for the model drug cyclosporine A (CsA), but also maintained a longer period of and higher supersaturation than was achieved with Soluplus alone. The Soluplus-SDS interactions were characterized by analyzing surface tension, small-angle X-ray scattering (SAXS), fluorescence spectra, and nuclear magnetic resonance spectroscopy. The results demonstrated that the formation of Soluplus-SDS complex via SDS adsorption on hydrophobic segments of Soluplus, which have more hydrophobic domain than that of Soluplus micelle, contributed significantly to the solubilization and stabilization of supersaturated CsA. Using this amphiphilic copolymer-small molecule surfactant system, the cellular uptake and rat in vivo absorption of CsA were more effectively achieved than pure Soluplus. The area under the plasma concentration-time curve (AUC) and the maximal plasma concentration (Cmax) achieved by CsA-loaded Soluplus-SDS complex were 1.58- and 1.8-times higher than the corresponding values for CsA-loaded pure Soluplus, respectively. This study highlighted the benefits of Soluplus-SDS complex for optimizing the solubilization and oral absorption of a drug with low aqueous solubility.
Journal of Pharmacy and Pharmacology | 2013
Quanlei Zhu; Tao Guo; Dengning Xia; Xiuying Li; Chunliu Zhu; Haiyan Li; Defang Ouyang; Jiwen Zhang; Yong Gan
The aim of this study was to investigate Pluronic F127‐modified liposome‐containing cyclodextrin (CD) inclusion complex (FLIC) for improving the solubility, cellular uptake and intestinal penetration of tacrolimus (FK 506) in the gastrointestinal (GI) tract.
Drug Discovery Today | 2016
Weiwei Fan; Dengning Xia; Quanlei Zhu; Lei Hu; Yong Gan
The intestinal epithelium is the main barrier restricting the oral delivery of low-permeability drugs. Over recent years, numerous nanocarriers have been designed to improve the efficiency of oral drug delivery. However, the intracellular processes determining the transport of nanocarriers across the intestinal epithelium remain elusive, and only limited enhancement of the oral bioavailability of drugs has been achieved. Here, we review the processes involved in nanocarrier trafficking across the intestinal epithelium, including apical endocytosis, intracellular transport, and basolateral exocytosis. Understanding the complex intracellular processes of nanocarrier trafficking is particularly essential for the rational design of oral drug delivery systems.
Current Drug Metabolism | 2015
Quanlei Zhu; Xiuying Li; Dengning Xia; Hongzhen Yu; Dan Chen; Weiwei Fan; Yong Gan
The application of lipid-based drug delivery systems on the industrial scale has successfully demonstrated their therapeutic and manufacturing advantages. Recently, various lipid-based formulations were successfully prepared for oral delivery of compounds that are difficult to administer. Nevertheless, an improved understanding of how these formulations affect drug absorption and metabolism is required to support the rapid and successful completion of drug development programs. In this review, we report the detailed mechanisms whereby lipids and lipid-based excipients affect drug absorption and metabolism, and summarize the capacity of lipids and lipid-based formulations to improve drug absorption by improving drug solubility, mucosa penetration, lymphatic transport, and hepatic metabolism. Finally, we discuss the progress made toward the use of novel lipid formulations to enhance oral absorption by surmounting specific absorption barriers.
Biomaterials | 2015
Dengning Xia; Yuan He; Quanlei Zhu; Dan Chen; Miaorong Yu; Fude Cui; Yong Gan
Ligand grafted nanoparticles have been shown to enhance drug transport across epithelium barrier and are expected to improve drug delivery. However, grafting of these ligands to the surface of pure nanodrug, i.e., nanocrystals (NCs), is a critical challenge due to the shedding of ligands along with the stabilizer upon high dilution or dissolving of the drug. Herein, a non-sheddable nanocage-like stabilizer was designed by covalent cross-linking of poly(acrylic acid)-b-poly(methyl acrylate) on drug nanocrystal surface, and a ligand, wheat germ agglutinin (WGA), was successfully anchored to the surface of itraconazole (ITZ) NCs by covalent conjugation to the nanocage (WGA-cage-NCs). The cellular study showed that large amount of WGA-cage-NCs were adhered to Caco-2 cell membrane, and invaded into cells, resulting in a higher drug uptake than that of ordinary NCs (ONCs). After oral administration to rats, WGA-cage-NC were largely accumulated on the apical side of epithelium cells, facilitating drug diffusing across epithelium barrier. Interestingly, WGA-cage-NCs were capable of invading rat intestinal villi and reaching to lamina propria by transcytosis across goblet cells, which behaved like a foodborne pathogen, Listeria monocytogenes. The WGA-cage-NCs showed an improved oral bioavailability, which was 17.5- and 2.41-folds higher than that of coarse crystals and ONCs, respectively. To our best knowledge, this may represent the first report that a functional ligand was successfully anchored to the surface of pure nanodrug by using a cage-like stabilizer, showing unique biological functions in gastrointestinal tract and having an important significance in oral drug delivery.
Journal of Materials Chemistry B | 2015
Quanlei Zhu; Wenyi Song; Dengning Xia; Weiwei Fan; Miaorong Yu; Shiyan Guo; Chunliu Zhu; Yong Gan
Poor permeability of the intestinal epithelium limits the oral absorption of many drugs. Here, a poly-l-glutamic acid (PGA)-based functional ternary nanocomplex (TC) is reported for enhancing the intestinal absorption of poorly permeable drug doxorubicin hydrochloride (Dox·HCl). The particle size and zeta potential of TC were 189.3 ± 13.7 nm and -29.1 ± 7.4 mV, respectively. The TC was shown to be more stable under simulated gastrointestinal changing pH or electrolyte content conditions than the binary nanocomplex Dox·HCl/PGA. Cellular uptake and the apparent permeability coefficient value (Papp) of the TC were determined to be 5.2- and 4.6-fold higher than that of Dox·HCl solutions, respectively. Mechanistic studies showed that active endocytosis caused by specific interactions between γ-glutamyl terminal groups of PGA and membrane-bound γ-glutamyl transferase contributed much to the TC-dependent Dox·HCl absorption. Studies on the rat model also demonstrated the highest efficiency for Dox·HCl absorption by the TC throughout the intestinal tract, with 2.6- and 4.2-fold higher Cmax and AUC0-24h values compared to Dox·HCl solutions. In conclusion, the TC is a promising carrier for improving Dox·HCl intestinal absorption, and the rational design of carriers with functional polymer PGA could implement the efficient active absorption of poorly permeable drugs.
Asian Journal of Pharmaceutical Sciences | 2018
Wenyi Song; Yuting Yang; Miaorong Yu; Quanlei Zhu; Mohammadali Soleimani Damaneh; Haijun Zhong; Yong Gan
Self-nanoemulsifying systems (SNEs) have excellent ability to improve the solubility of poorly water-soluble drugs (PWSD). However, SNEs are likely to be degraded in gastrointestinal (GIT) when their surface is recognized by lipase/co-lipase enzyme complex, resulting in rapid release and precipitation of encapsulated drugs. The precipitates are then captured and removed by intestinal mucus, reducing the delivery efficacy of SNEs. Herein, the amphiphilic polymer Pluronic® F127 was incorporated into long and short-chain triglycerides (LCT, SCT) based SNEs to diminish the recognition and therefore minimized their degradation by enzymes and clearance by mucus. The SNEs were characterized in terms of particle size, zeta potential and stability. Ex vivo multiple particles tracking studies were performed by adding particle solution into fresh rat mucus. Cellular uptake of SNEs were conducted by using E12 cells, the absorption and distribution in small intestine were also studied after oral administration in male Sprague-Dawley (SD) rats. The in vitro digestion rate of SNEs were found to be in following order SCT-SNE > SCT-F127-SNE > LCT-SNE > LCT-F127-SNE. Moreover, the LCT-F127-SNE was found to be most effective in enhancing cellular uptake, resulting in 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE and SCT-F127-SNE, respectively. After incubating the SNE with E12 cells, the LCT-F127-SNE exhibited the highest amount regarding both mucus penetration and cellular uptake, with an uptake amount number (via bicinchoninic acid (BCA) analysis) of 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE and SCT-F127-SNE, respectively. The in vivo results revealed that orally administered LCT-F127-SNE could significantly increase the bioavailability of Cyclosporine A (CsA), which was approximately 2.43-fold, 1.33-fold and 1.80-fold higher than that of SCT-SNE, SCT-F127-SNE and LCT-SNE, respectively. We address in this work that F127-modified SNEs have potentials to improve oral drug absorption by significantly reducing gastrointestinal enzymatic degradation and simultaneously enhancing mucus penetration.