Quanzu Yang
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quanzu Yang.
Biomaterials | 2002
Dean-Mo Liu; Quanzu Yang; Tom Troczynski
Thin film hydroxyapatite deposits onto sandblasted 316L stainless steel substrates were prepared using water-based sol-gel technique recently developed in our lab. The coatings were annealed in air at 375 degrees C, 400 degrees C, and 500 degrees C. Phase formation, surface morphology, interfacial microstructure, and interfacial bonding strength of the coatings were investigated. Apatitic structure developed within the coatings while annealing at temperatures > or = 400 degrees C, while those heat-treated at 375 degrees C showed poor crystallinity. The coatings were dense and firmly attached to the underlying substrates, reaching an average bonding strength (as determined through the pull-out test) of 44 MPa. Nano-porous structure was found for the coatings annealed at 500 degrees C, believed to result from grain growth, and causing a slight decrease in the bonding strength. Surface microcracking, although not extensive, occurred after annealing at temperatures > or = 400 degrees C, and was linked to non-uniform thickness of the coating due to roughness of the substrate. A contraction of the coatings as a result of sintering, and phase transition from amorphous (or poor crystalline) to reasonably good crystalline apatite, may be responsible for the loss of structural integrity of the thicker sections of the coatings. It seems quite promising that a dense and adhesive apatite coating can be achieved through water-based sol gel technology after short-term annealing at around 400 degrees C in air.
Biomaterials | 2002
Dean-Mo Liu; Quanzu Yang; Tom Troczynski; Wenjea J. Tseng
Structural evolution upon transformation of sol to gel, and gel to final ceramic during the synthesis of hydroxyapatite is investigated using Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), thermal behavior (DTA and TGA), and electron microscopy examination (SEM/TEM). The sol was first thermally aged at 45 C for various time periods up to 120 min. The colloidal sol, which may have an oligomeric structure, was relatively stable against coagulation. Upon drying, the sol particles consolidated into dry gel through van der Waals attraction, and showed X-ray amorphous phosphate structure. The solid gels showed a particulate microstructure, composed of primary particles of about 8-10 nm in diameter. The amorphous gel transformed into crystalline apatite at temperatures > 300 C. The calcined gels showed a nano-scale microstructure, with grains of 20-50 nm in diameter. Through an appropriate heat treatment between 300 and 400d degrees C. the apatite prepared using current process exhibits a nano-scale, low-crystallinity, carbonated apatitic structure, which closely resembles that of human bone apatite.
Biomaterials | 2002
Quanzu Yang; Tom Troczynski; Dean-Mo Liu
This preliminary study explores the seeding effect (using crystalline hydroxyapatite particles) on the setting time, compressive strength, phase evolution, and microstructure of calcium phosphate cements (CPC) based on monocalcium phosphate monohydrate and calcium hydroxide. Experimental results showed that the setting time varies from 5 to about 30 min, as the seed concentration increased from 0 to 20 wt%. The compressive strength of CPC increased from 4 to 17 MPa, followed by decrease to 12 MPa, for the same range of seeds content. The CPC transformed to predominantly apatitic structure within 24 h for all the samples, with or without the seeds. However, increase of the seed concentration improved the final crystallinity of the apatite phase, suggesting nucleation and growth effects during precipitation of CPC from the precursor solution. The microstructure of the resulting apatitic cement showed a change from essentially featureless (or glass-like) to thin, elongated plate-like morphology, as seeds concentration increased. Correlation between microstructural evolution and corresponding compressive strength of seeded CPC is investigated.
Surface & Coatings Technology | 2004
H.M Hawthorne; Anne Neville; Tom Troczynski; Xinming Hu; M. Thammachart; Yongsong Xie; J Fu; Quanzu Yang
Abstract Phosphate-bonded sol–gel composite alumina coatings were prepared on stainless steel substrates at processing temperatures of 300, 400 and 500°C. Mechanical property and electrochemical characterisation has been carried out and relationships sought between both processing temperature and coating microstructure. Coating corrosion and electrochemical behaviour is largely controlled by the degree of cracking and porosity in the coatings, which is minimum in those processed at the lowest temperature. Little correlation was found between coating processing or microstructure and coating mechanical properties (micro and scratch hardness, elastic modulus) or residual stresses but the interface toughness, as measured by a high load indentation method, increased with process temperature on coatings deposited on sand-blasted substrate surfaces.
Journal of Biomedical Materials Research Part A | 2014
Tianxing Gong; Zhiqin Wang; Yubiao Zhang; Changshan Sun; Quanzu Yang; Tom Troczynski; Urs O. Häfeli
Injectable bone cements have been well characterized and studied in non-load bearing bone fixation and bone screw augmentation applications. Current calcium phosphate cement or poly(methyl methacrylate) cement have drawbacks like low mechanical strength and in situ exothermic properties. This leads especially in patients with osteoporosis to worsening contact between implant and bone and can finally lead to implant failure. To improve these properties, a calcium silicate cement (CSC) was prepared, which additionally contained the bisphosphonate risedronate (RA) to promote osteoblast function. Cement setting rate and compressive strength were measured and found to be reduced by RA above 0.5 wt%. X-ray diffraction, Rietveld refinement analysis, scanning electron microscopy, and porosity measurements by gas sorption revealed that RA reduces calcium silicate hydrate gel formation and changes the cements microstructure. Cumulative release profiles of RA from CSC up to 6 months into phosphate buffer solution were analyzed by high-performance liquid chromatography, and the results were compared with theoretical release curves obtained from the Higuchi equation. Fourier transform infrared spectra measurements and drug release studies indicate that calcium-RA formed within the cement, from which the drug can be slowly released over time. An investigation of the cytotoxicity of the RA-CSC systems upon osteoblast-like cells showed no toxic effects of concentrations up to 2%. The delivery of RA from within a CSC might thus be a valuable and biocompatible new approach to locally deliver RA and to reconstruct and/or repair osteoporosis-related bone fractures.
Journal of Materials Science: Materials in Medicine | 2002
Dean-Mo Liu; Quanzu Yang; Tomasz Troczynski
In-vitro deposition of calcium phosphate layer (CPL) on metallic substrate requires special surface preparation in order to provide an interfacial bond. In this work 316 stainless steel surface is modified through deposition of a thin film (∼0.5 μm) of sol–gel hydroxyapatite (SG-HA). This well-bonded film acts as an intermediary and nucleation surface of the CPL film. The SG-HA films were annealed at 375 °C (samples coded 375-ACS) and 400 °C (400-ACS) to achieve different crystallinity of the films, and thus to affect and study the CPL nucleation process. The CPL growth was investigated in terms of deposition kinetics and microstructural development. A deposition rate of dense CPL of about 0.43 μm/day was achieved on the crystallized film of 400-ACS, and 0.22 μm/day of porous CPL on amorphous 375-ACS. A compositional variation of Ca/P ratio across the CPL film thickness (400-ACS) was observed. Lower Ca/P ratio of 1.2 was detected near the substrate-CPL interface and about 1.5 near the solution-CPL interface. Infrared analysis showed the CPL to be of apatitic calcium-deficient structure. Kinetic model explaining the advancement of the CPL upon the in-vitro immersion is proposed.
Archive | 2005
Tomasz Troczynski; Quanzu Yang
Archive | 2001
Tomasz Troczynski; Dean-Mo Liu; Quanzu Yang
Archive | 2000
Tomasz Troczynski; Quanzu Yang
Archive | 2002
Tomasz Troczynski; Quanzu Yang