Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Quentin C. B. Cronk is active.

Publication


Featured researches published by Quentin C. B. Cronk.


Nature | 2001

Rapid and recent origin of species richness in the Cape flora of South Africa

James E. Richardson; Frans Weitz; Michael F. Fay; Quentin C. B. Cronk; H. Peter Linder; Gail Reeves; Mark W. Chase

The Cape flora of South Africa grows in a continental area with many diverse and endemic species. We need to understand the evolutionary origins and ages of such ‘hotspots’ to conserve them effectively. In volcanic islands the timing of diversification can be precisely measured with potassium–argon dating. In contrast, the history of these continental species is based upon an incomplete fossil record and relatively imprecise isotopic palaeotemperature signatures. Here we use molecular phylogenetics and precise dating of two island species within the same clade as the continental taxa to show recent speciation in a species-rich genus characteristic of the Cape flora. The results indicate that diversification began approximately 7–8 Myr ago, coincident with extensive aridification caused by changes in ocean currents. The recent origin of endemic species diversity in the Cape flora shows that large continental bursts of speciation can occur rapidly over timescales comparable to those previously associated with oceanic island radiations.


Plant Journal | 2012

The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads

Zhiwen Wang; Neil Hobson; Leonardo Galindo; Shilin Zhu; Daihu Shi; Joshua McDill; Linfeng Yang; Simon Hawkins; Godfrey Neutelings; Raju Datla; Georgina M. Lambert; David W. Galbraith; Christopher J. Grassa; Armando Geraldes; Quentin C. B. Cronk; Christopher A. Cullis; Prasanta K. Dash; Polumetla Ananda Kumar; Sylvie Cloutier; Andrew G. Sharpe; Gane Ka-Shu Wong; Jun Wang; Michael K. Deyholos

Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species.


Environmental Conservation | 2007

Ecological and socioeconomic impacts of invasive alien species in island ecosystems

Jamie K. Reaser; Laura A. Meyerson; Quentin C. B. Cronk; Maj De Poorter; L.G. Eldrege; Edmund Green; Moses T.K. Kairo; Pepetua Latasi; Richard N. Mack; John Mauremootoo; Dennis J. O'Dowd; Warea Orapa; Soetikno Slamet Sastroutomo; Alan Saunders; Clare Shine; Sigurdur Thrainsson; Leliua Vaiutu

Minimizing the impact of invasive alien species (IAS) on islands and elsewhere requires researchers to provide cogent information on the environmental and socioeconomic consequences of IAS to the public and policy makers. Unfortunately, this information has not been readily available owing to a paucity of scientific research and the failure of the scientific community to make their findings readily available to decision makers. This review explores the vulnerability of islands to biological invasion, reports on environmental and socioeconomic impacts of IAS on islands and provides guidance and information on technical resources that can help minimize the effects of IAS in island ecosystems. This assessment is intended to provide a holistic perspective on island-IAS dynamics, enable biologists and social scientists to identify information gaps that warrant further research and serve as a primer for policy makers seeking to minimize the impact of IAS on island systems. Case studies have been selected to reflect the most scientifically-reliable information on the impacts of IAS on islands. Sufficient evidence has emerged to conclude that IAS are the most significant drivers of population declines and species extinctions in island ecosystems worldwide. Clearly, IAS can also have significant socioeconomic impacts directly (for example human health) and indirectly through their effects on ecosystem goods and services. These impacts are manifest at all ecological levels and affect the poorest, as well as richest, island nations. The measures needed to prevent and minimize the impacts of IAS on island ecosystems are generally known. However, many island nations and territories lack the scientific and technical information, infrastructure and human and financial resources necessary to adequately address the problems caused by IAS. Because every nation is an exporter and importer of goods and services, every nation is also a facilitator and victim of the invasion of alien species. Wealthy nations therefore need to help raise the capacity of island nations and territories to minimize the spread and impact of IAS.


Molecular Ecology | 2006

Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa

Erin J. Gilchrist; George W. Haughn; Cheng C. Ying; Sarah P. Otto; Jun Zhuang; Dorothy Cheung; Björn Hamberger; Fariba Aboutorabi; Tatyana B. Kalynyak; Lee A. Johnson; Joerg Bohlmann; Brian E. Ellis; Carl J. Douglas; Quentin C. B. Cronk

Ecotilling was used as a simple nucleotide polymorphism (SNP) discovery tool to examine DNA variation in natural populations of the western black cottonwood, Populus trichocarpa, and was found to be more efficient than sequencing for large‐scale studies of genetic variation in this tree. A publicly available, live reference collection of P. trichocarpa from the University of British Columbia Botanical Garden was used in this study to survey variation in nine different genes among individuals from 41 different populations. A large amount of genetic variation was detected, but the level of variation appears to be less than in the related species, Populus tremula, based on reported statistics for that tree. Genes examined varied considerably in their level of variation, from PoptrTB1 which had a single SNP, to PoptrLFY which had more than 23 in the 1000‐bp region examined. Overall nucleotide diversity, measured as Total, was relatively low at 0.00184. Linkage disequilibrium, on the other hand, was higher than reported for some woody plant species, with mean r2 equal to 0.34. This study reveals the potential of Ecotilling as a rapid genotype discovery method to explore and utilize the large pool of genetic variation in tree species.


Journal of Experimental Botany | 2008

Bird-pollinated flowers in an evolutionary and molecular context

Quentin C. B. Cronk; Isidro Ojeda

Evolutionary shifts to bird pollination (ornithophily) have occurred independently in many lineages of flowering plants. This shift affects many floral features, particularly those responsible for the attraction of birds, deterrence of illegitimate flower visitors (particularly bees), protection from vigorous foraging by birds, and accurate placement of pollen on birds bodies. Red coloration appears to play a major role in both bee-deterrence and bird-attraction. Other mechanisms of bird-attraction include the production of abundant dilute nectar and the provision of secondary perches (for non-hovering birds). As a result of selection for similar phenotypic traits in unrelated bird-pollinated species, a floral syndrome of ornithophily can be recognized, and this review surveys the component floral traits. The strong convergent evolution evident in bird-pollinated flowers raises a question about the nature of the genetic mechanisms underlying such transitions and whether the same gene systems are involved in most cases. As yet there is too little information to answer this question. However, some promising model systems have been developed that include closely related bee and bird-pollinated flowers, such as Ipomoea, Mimulus, and Lotus. Recent studies of floral developmental genetics have identified numerous genes important in the development of the floral phenotype, which are also potential candidates for involvement in shifts between bee-pollination and bird pollination. As more whole-genome information becomes available, progress should be rapid.


Systematic Biology | 2004

Plant–Insect Interactions: Double-Dating Associated Insect and Plant Lineages Reveals Asynchronous Radiations

Diana M. Percy; Roderic D. M. Page; Quentin C. B. Cronk

An increasing number of plant-insect studies using phylogenetic analysis suggest that cospeciation events are rare in plant-insect systems. Instead, nonrandom patterns of phylogenetic congruence are produced by phylogenetically conserved host switching (to related plants) or tracking of particular resources or traits (e.g., chemical). The dominance of host switching in many phytophagous insect groups may make the detection of genuine cospeciation events difficult. One important test of putative cospeciation events is to verify whether reciprocal speciation is temporally plausible. We explored techniques for double-dating of both plant and insect phylogenies. We use dated molecular phylogenies of a psyllid (Hemiptera)-Genisteae (Fabaceae) system, a predominantly monophagous insect-plant association widespread on the Atlantic Macaronesian islands. Phylogenetic reconciliation analysis suggests high levels of parallel cladogenesis between legumes and psyllids. However, dating using molecular clocks calibrated on known geological ages of the Macaronesian islands revealed that the legume and psyllid radiations were not contemporaneous but sequential. Whereas the main plant radiation occurred some 8 million years ago, the insect radiation occurred about 3 million years ago. We estimated that >60% of the psyllid speciation has resulted from host switching between related hosts. The only evidence for true cospeciation is in the much more recent and localized radiation of genistoid legumes in the Canary Islands, where the psyllid and legume radiations have been partially contemporaneous. The identification of specific cospeciation events over this time period, however, is hindered by the phylogenetic uncertainty in both legume and psyllid phylogenies due to the apparent rapidity of the species radiations.


American Journal of Botany | 2000

A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences

James E. Richardson; Michael F. Fay; Quentin C. B. Cronk; Diane Bowman; Mark W. Chase

Previous tribal classifications of Rhamnaceae have been based on fruit characters, resulting in the delimitation of large and otherwise heterogeneous groups. We evaluated the most recent classification with DNA sequences of two regions of the plastid genome, rbcL and trnL-F, from 42 genera of Rhamnaceae and representatives of the related families Elaeagnaceae, Barbeyaceae, Dirachmaceae, Urticaceae, Ulmaceae, Moraceae, and Rosaceae. The trnL-F trees have higher consistency and retention indices than the rbcL trees, and patterns of change in rbcL and trnL-F are compared. The closest relatives of Rhamnaceae are Dirachmaceae and Barbeyaceae, followed by the urticalean families. The plastid trees support the monophyly of the family and provide the basis for a new tribal classification. Three strongly supported clades are identified, but morphological characters could not be found to underpin a formal taxonomic description of these three clades as subfamilies. We therefore only recognize groups that are also defined by morphological characters. The biogeography of Rhamnaceae is discussed with reference to the molecular trees.


Nature Reviews Genetics | 2001

PLANT EVOLUTION AND DEVELOPMENT IN A POST-GENOMIC CONTEXT

Quentin C. B. Cronk

Large-scale gene-sequencing projects that have been undertaken in animals have involved organisms from contrasting taxonomic groups, such as worm, fly and mammal. By contrast, similar botanical projects have focused exclusively on flowering plants. This has made it difficult to carry out fundamental research on how plants have evolved from simple to complex forms — a task that has been very successful in animals. However, in the flowering plants, the many completely or partially sequenced genomes now becoming available will provide a powerful tool to investigate the details of evolution in one group of related organisms.


New Phytologist | 2012

Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa

Gancho Trifonu Slavov; Stephen P. DiFazio; Joel Martin; Wendy Schackwitz; Wellington Muchero; Eli Rodgers-Melnick; Mindie F. Lipphardt; Christa Pennacchio; Uffe Hellsten; Len A. Pennacchio; Lee E. Gunter; Priya Ranjan; Kelly J. Vining; Kyle R. Pomraning; Larry J. Wilhelm; Matteo Pellegrini; Todd C. Mockler; Michael Freitag; Armando Geraldes; Yousry A. El-Kassaby; Shawn D. Mansfield; Quentin C. B. Cronk; Carl J. Douglas; Steven H. Strauss; Dan Rokhsar; Gerald A. Tuskan

• Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype-genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination. • We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29,213 single-nucleotide polymorphisms. • Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r(2) dropping below 0.2 within 3-6 kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (N(e) ≈ 4000-6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features. • Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed.


Proceedings of the National Academy of Sciences of the United States of America | 2006

An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation

Hélène L. Citerne; R. Toby Pennington; Quentin C. B. Cronk

Within papilionoid legumes, characterized by flowers with strong bilateral symmetry, a derived condition within angiosperms, Cadia (Cadia purpurea) has reverted to radially symmetrical flowers. Here, we investigate the genetic basis of this morphological reversal. Two orthologues of the floral symmetry gene CYCLOIDEA (CYC) demarcate the adaxial (dorsal) region of the flower in typical papilionoid legumes. In the model legume Lotus japonicus, one of these LegCYC genes has been shown, like CYC, to be required for the establishment of floral bilateral symmetry. This study shows that these genes are expressed in the adaxial region of the typical papilionoid flower of Lupinus, which belongs to the same papilionoid subclade as Cadia. In Cadia, these genes also are expressed, but the expression pattern of one of these has expanded from the adaxial to the lateral and abaxial regions of the corolla. This result suggests that the radial flowers of Cadia are dorsalized and, therefore, are not a true evolutionary reversal but an innovative homeotic transformation, where, in this case, all petals have acquired dorsal identity. This study raises a question over other putative reversals in animals and plants, which also may be cryptic innovations.

Collaboration


Dive into the Quentin C. B. Cronk's collaboration.

Top Co-Authors

Avatar

Carl J. Douglas

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Shawn D. Mansfield

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Armando Geraldes

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Robert D. Guy

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Yousry A. El-Kassaby

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael Möller

Royal Botanic Garden Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Athena D. McKown

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Diana M. Percy

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Hannes Dempewolf

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michael Friedmann

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge