Quentin Daniel
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quentin Daniel.
Nature Communications | 2016
Ke Fan; Hong Chen; Yongfei Ji; Hui Huang; Per Martin Claesson; Quentin Daniel; Bertrand Philippe; Håkan Rensmo; Fusheng Li; Yi Luo; Licheng Sun
Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel–vanadium-layered double hydroxide that shows a current density of 27 mA cm−2 (57 mA cm−2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel–iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel–vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting.
Journal of the American Chemical Society | 2015
Fusheng Li; Ke Fan; Bo Xu; Erik O. Gabrielsson; Quentin Daniel; Lin Li; Licheng Sun
Light driven water splitting was achieved by a tandem dye-sensitized photoelectrochemical cell with two photoactive electrodes. The photoanode is constituted by an organic dye L0 as photosensitizer and a molecular complex Ru1 as water oxidation catalyst on meso-porous TiO2, while the photocathode is constructed with an organic dye P1 as photoabsorber and a molecular complex Co1 as hydrogen generation catalyst on nanostructured NiO. By combining the photocathode and the photoanode, this tandem DS-PEC cell can split water by visible light under neutral pH conditions without applying any bias.
Angewandte Chemie | 2017
Ke Fan; Yongfei Ji; Haiyuan Zou; Jinfeng Zhang; Bicheng Zhu; Hong Chen; Quentin Daniel; Yi Luo; Jiaguo Yu; Licheng Sun
Noble-metal-free bimetal-based electrocatalysts have shown high efficiency for water oxidation. Ni and/or Co in these electrocatalysts are essential to provide a conductive, high-surface area and a chemically stable host. However, the necessity of Ni or Co limits the scope of low-cost electrocatalysts. Herein, we report a hierarchical hollow FeV composite, which is Ni- and Co-free and highly efficient for electrocatalytic water oxidation with low overpotential 390 mV (10 mA cm-2 catalytic current density), low Tafel slope of 36.7 mV dec-1 , and a considerable durability. This work provides a novel and efficient catalyst, and greatly expands the scope of low-cost Fe-based electrocatalysts for water splitting without need of Ni or Co.
Chemsuschem | 2015
Ke Fan; Fusheng Li; Lei Wang; Quentin Daniel; Hong Chen; Erik Gabrielsson; Junliang Sun; Licheng Sun
Photoelectrochemical (PEC) cells for light-driven water splitting are prepared using hematite nanorod arrays on conductive glass as the photoanode. These devices improve the photocurrent of the hematite-based photoanode for water splitting, owing to fewer surface traps and decreased electron recombination resulting from the one-dimensional structure. By employing a molecular ruthenium co-catalyst, which contains a strong 2,6-pyridine-dicarboxylic acid anchoring group at the hematite photoanode, the photocurrent of the PEC cell is enhanced with high stability for over 10 000 s in a 1 m KOH solution. This approach can pave a route for combining one-dimensional nanomaterials and molecular catalysts to split water with high efficiency and stability.
Journal of Materials Chemistry | 2016
Jiayan Cong; Dominik Kinschel; Quentin Daniel; Majid Safdari; Erik O. Gabrielsson; Hong Chen; Per H. Svensson; Licheng Sun; Lars Kloo
A new redox couple, [Cu(bpye)2]+/2+, has been synthesized, and applied in dye-sensitized solar cells (DSSCs). Overall efficiencies of 9.0% at 1 sun and 9.9% at 0.5 sun were obtained, which are considerably higher than those obtained for cells containing the reference redox couple, [Co(bpy)3]2+/3+. These results represent a record for copper-based complex redox systems in liquid DSSCs. Fast dye regeneration, sluggish recombination loss processes, faster electron self-exchange reactions and suitable redox potentials are the main reasons for the observed increase in efficiency. In particular, the main disadvantage of cobalt complex-based redox couples, charge-transport problems, appears to be resolved by a change to copper complex redox couples. The results make copper complex-based redox couples very promising for further development of highly efficient DSSCs.
Nature Communications | 2018
Peili Zhang; Lin Li; Dennis Nordlund; Hong Chen; Lizhou Fan; Biaobiao Zhang; Xia Sheng; Quentin Daniel; Licheng Sun
Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm−2. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.Splitting water into high-energy fuel represents a renewable way to generate energy, yet the sluggish oxidation kinetics drives up technological costs. Here, the authors prepare tri-metallic core-shell electrodes using nickel, iron, and copper metals to accelerate electricity-driven water splitting.
Chemical Communications | 2016
Ram B. Ambre; Quentin Daniel; Ting Fan; Hong Chen; Biaobiao Zhang; Lei Wang; Mårten S. G. Ahlquist; Lele Duan; Licheng Sun
Iron porphyrins Fe-pE, Fe-mE, and Fe-oE were synthesized and their electrochemical behavior for CO2 reduction to CO has been investigated. The controlled potential electrolysis of Fe-mE gave exclusive 65% Faradaic efficiency (FE) whereas Fe-oE achieved quasi-quantitative 98% FE (2% H2) for CO production.
Journal of Materials Chemistry | 2017
Peili Zhang; Hong Chen; Mei Wang; Yong Yang; Jian Jiang; Biaobiao Zhang; Lele Duan; Quentin Daniel; Fusheng Li; Licheng Sun
One of the grand challenges for developing scalable and sustainable hydrogen producing systems is the lack of efficient and robust earth-abundant element based catalysts for the hydrogen evolution reaction (HER). Herein, a hierarchically structured Ni–Co–P film was fabricated via a gas templating electro-deposition method. This film exhibits remarkably high catalytic performance for the HER in 1 M KOH with respective current densities of −10 and −500 mA cm−2 at the overpotentials of −30 and −185 mV with a Tafel slope of 41 mV dec−1. A controlled potential electrolysis experiment demonstrates that the as-prepared Ni–Co–P film is an efficient and robust catalyst with a faradaic efficiency close to 100%. Systematic characterization suggests that the unique hierarchical structure and the mutual participation of nano-sized Ni/Co based components are responsible for the high HER catalytic activity.
Chemsuschem | 2017
Biaobiao Zhang; Yuanyuan Li; Mario Valvo; Lizhou Fan; Quentin Daniel; Peili Zhang; Linqin Wang; Licheng Sun
The development of manganese-based water oxidation electrocatalysts is desirable for the production of solar fuels, as manganese is earth-abundant, inexpensive, non-toxic, and has been employed by the Photosystem II in nature for a billion years. Herein, we directly constructed a 3 D nanoarchitectured turbostratic δ-MnOx on carbon nanotube-modified nickel foam (MnOx /CNT/NF) by electrodeposition and a subsequent annealing process. The MnOx /CNT/NF electrode gives a benchmark catalytic current density (10 mA cm-2 ) at an overpotential (η) of 270 mV under alkaline conditions. A steady current density of 19 mA cm-2 is obtained during electrolysis at 1.53 V for 1.0 h. To the best of our knowledge, this work represents the most efficient manganese-oxide-based water oxidation electrode and demonstrates that manganese oxides, as a structural and functional model of oxygen-evolving complex (OEC) in Photosystem II, can also become comparable to those of most Ni- and Co-based catalysts.
iScience | 2018
Biaobiao Zhang; Quentin Daniel; Lizhou Fan; Tianqi Liu; Qijun Meng; Licheng Sun
Summary Identifying surface active intermediate species is essential to reveal the catalytic mechanism of water oxidation by metal-oxides-based catalysts and to develop more efficient catalysts for oxygen-oxygen bond formation. Here we report, through electrochemical methods and ex situ infrared spectroscopy, the identification of a MnVII = O intermediate during catalytic water oxidation by a c-disordered δ-MnOx with an onset-potential-dependent reduction peak at 0.93 V and an infrared peak at 912 cm−1. This intermediate is proved to be highly reactive and much more oxidative than permanganate ion. Therefore, we propose a new catalytic mechanism for water oxidation catalyzed by Mn oxides, with involvement of the MnVII = O intermediate in a resting state and the MnIV−O−MnVII = O as a real active species for oxygen-oxygen bond formation.