Quentin Galand
Université libre de Bruxelles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Quentin Galand.
Journal of Applied Physics | 2009
Jacopo Buongiorno; David C. Venerus; Naveen Prabhat; Thomas J. McKrell; Jessica Townsend; Rebecca J. Christianson; Yuriy V. Tolmachev; Pawel Keblinski; Lin Wen Hu; Jorge L. Alvarado; In Cheol Bang; Sandra Whaley Bishnoi; Marco Bonetti; Frank Botz; Yun Chang; Gang Chen; Haisheng Chen; Sung Jae Chung; Minking K. Chyu; Sarit K. Das; Roberto Di Paola; Yulong Ding; Frank Dubois; Grzegorz Dzido; Jacob Eapen; Werner Escher; Denis Funfschilling; Quentin Galand; Jinwei Gao; Patricia E. Gharagozloo
This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.
European Physical Journal E | 2015
M. Mounir Bou-Ali; Amirhossein Ahadi; D. Alonso de Mezquia; Quentin Galand; M. Gebhardt; O. Khlybov; W. Köhler; Miren Larrañaga; Jean Claude Legros; Tatyana Lyubimova; Aliaksandr Mialdun; Ilya I. Ryzhkov; M. Z. Saghir; Valentina Shevtsova; S. Van Vaerenbergh
With the aim of providing reliable benchmark values, we have measured the Soret, thermodiffusion and molecular diffusion coefficients for the ternary mixture formed by 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane for a mass fraction of 0.8-0.1-0.1 and at a temperature of 25°C. The experimental techniques used by the six participating laboratories are Optical Digital Interferometry, Taylor Dispersion technique, Open Ended Capillary, Optical Beam Deflection, Thermogravitational technique and Sliding Symmetric Tubes technique in ground conditions and Selectable Optical Diagnostic Instrument (SODI) in microgravity conditions. The measurements obtained in the SODI installation have been analyzed independently by four laboratories. Benchmark values are proposed for the thermodiffusion and Soret coefficients and for the eigenvalues of the diffusion matrix in ground conditions, and for Soret coefficients in microgravity conditions.Graphical abstract
European Physical Journal E | 2015
Quentin Galand; Stefan Van Vaerenbergh
This paper provides the molecular diffusion and Soret coefficients of the ternary system 1,2,3,4-tetrahydronaphtalene, isobutylbenzene, n -dodecane system at mass fractions 0.8-0.1-0.1 and temperature 25 °C for implementation into the benchmark presented in this topical issue. The Soret coefficients are determined by digital interferometry using the data of DSC-DCMIX microgravity experiment. The method used takes into account the influence of the thermal field on the Soret separations and the selection of the image processing techniques results in reproducible Soret coefficients.The diffusion coefficients are obtained by the Open Ended Capillary technique The fitting of the data collected through a set of two complementary experimental runs allows retrieving the four Fickian diffusion coefficients.Graphical abstract
Advances in Mechanical Engineering | 2013
Mohamed Mojahed; Stefan Van Vaerenbergh; Quentin Galand
Thermal conductivity measurements of nanofluids were the subject of a considerable amount of published research works. Up to now, the experimental results reported in the current literature are still scarce and show many discrepancies. In this paper we propose measurements of this parameter using another experimental set-up. Because of very good thermal controls and big aspect ratio, the Bénard set-up is particularly well suited to determine the thermal conductivity. The aim of this paper is to detail the experimental measurement protocol. The investigated liquid is composed of single walled carbon nanotubes dispersed in water. The effect of liquid temperature on thermal conductivity was investigated. Obtained results confirm the potential of nanofluids in enhancing thermal conductivity and also show that the thermal conductivity temperature dependence is nonlinear, which is different from the results for metal/metal oxide nanofluids.
ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting | 2010
Carlo Saverio Iorio; Claire Perfetti; Quentin Galand; S. Van Vaerenbergh
Many industrial processes make extensive use of membranes to separate fluxes while allowing some of the constituent species to diffuse into each other. In recent years, high production and maintenance costs induced by fouling, poisoning and clogging of the membrane pores due to impurities have create conditions to study alternative way of making liquid and/or gaseous streams interact and diffuse without the presence of a physical barrier. One of the possibilities is offered by the essentially laminar character of the flow in microfluidic devices that allows two or more different fluid streams to merge without mixing in a large range of experimental and industrial conditions. In this work, we will study, numerically, the case of two streams of different composition merging in a micro-channel. The upper and lower sides of the micro-channel are heated differentially and the inlet velocity of the streams is set independently in the range 0–1m/s. Simulations are carried out in 2D and 3D while fluids are chosen by considering their industrial importance and application. The main results are that the stability of the streams is very sensitive to the inlet conditions and that it is possible to modulate the mixing layer thickness by acting on thermal gradients, geometrical constraints and slip flow conditions.Copyright
Applied Rheology | 2010
David C. Venerus; Jacopo Buongiorno; Rebecca J. Christianson; Jessica Townsend; In Cheol Bang; Gang Chen; Sung Jae Chung; Minking K. Chyu; Haisheng Chen; Yulong Ding; Frank Dubois; Grzegorz Dzido; Denis Funfschilling; Quentin Galand; Jinwei Gao; Haiping Hong; Mark Horton; Lin-Wen Hu; Carlo Saverio Iorio; Andrzej B. Jarzębski; Yiran Jiang; Stephan Kabelac; Mark A. Kedzierski; Chongyoup Kim; Ji Hyun Kim; Sukwon Kim; Thomas J. McKrell; Rui Ni; John Philip; Naveen Prabhat
Optics and Lasers in Engineering | 2013
M.A. Rahman; Quentin Galand; M. Soliman; S. Van Vaerenbergh; M. Z. Saghir
Acta Astronautica | 2013
R. Savino; S. Van Vaerenbergh; Yoshiyuki Abe; G. Pizzirusso; Wassilis Tzevelecos; Mohamed Mojahed; Quentin Galand
Energy & Fuels | 2008
Quentin Galand; S. Van Vaerenbergh; François Montel
Archive | 2012
Quentin Galand; Stefan Van Vaerenbergh