Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Quentin J. Sattentau is active.

Publication


Featured researches published by Quentin J. Sattentau.


Nature | 1998

A new classification for HIV-1

Edward A. Berger; Robert W. Doms; Eva Maria Fenyö; Bette T. Korber; Dan R. Littman; John P. Moore; Quentin J. Sattentau; Hanneke Schuitemaker; Joseph Sodroski; Robin A. Weiss

The phenotype of HIV-1 isolates is defined by the cells in which they replicate in vitro, but these phenotypes can change in vivo with profound implications for viral transmission, pathogenesis and disease progression. Here we propose a new classification system based on co-receptor use, providing a more accurate description of viral phenotype than the present imprecise and often misleading classification schemes.


Nature Cell Biology | 2008

Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission.

Stefanie Sowinski; Clare Jolly; Otto Berninghausen; Marco A. Purbhoo; Anne Chauveau; Karsten Köhler; Stephane Oddos; Philipp Eissmann; Frances M. Brodsky; Colin R. Hopkins; Björn Önfelt; Quentin J. Sattentau; Daniel M. Davis

Transmission of HIV-1 via intercellular connections has been estimated as 100–1000 times more efficient than a cell-free process, perhaps in part explaining persistent viral spread in the presence of neutralizing antibodies. Such effective intercellular transfer of HIV-1 could occur through virological synapses or target-cell filopodia connected to infected cells. Here we report that membrane nanotubes, formed when T cells make contact and subsequently part, provide a new route for HIV-1 transmission. Membrane nanotubes are known to connect various cell types, including neuronal and immune cells, and allow calcium-mediated signals to spread between connected myeloid cells. However, T-cell nanotubes are distinct from open-ended membranous tethers between other cell types, as a dynamic junction persists within T-cell nanotubes or at their contact with cell bodies. We also report that an extracellular matrix scaffold allows T-cell nanotubes to adopt variably shaped contours. HIV-1 transfers to uninfected T cells through nanotubes in a receptor-dependent manner. These data lead us to propose that HIV-1 can spread using nanotubular connections formed by short-term intercellular unions in which T cells specialize.


Journal of Experimental Medicine | 2004

HIV-1 Cell to Cell Transfer across an Env-induced, Actin-dependent Synapse

Clare Jolly; Kirk Kashefi; Michael Hollinshead; Quentin J. Sattentau

Direct cell–cell transfer is an efficient mechanism of viral dissemination within an infected host, and human immunodeficiency virus 1 (HIV-1) can exploit this mode of spread. Receptor recognition by HIV-1 occurs via interactions between the viral surface envelope glycoprotein (Env), gp120, and CD4 and a chemokine receptor, CCR5 or CXCR4. Here, we demonstrate that the binding of CXCR4-using HIV-1–infected effector T cells to primary CD4+/CXCR4+ target T cells results in rapid recruitment to the interface of CD4, CXCR4, talin, and lymphocyte function–associated antigen 1 on the target cell, and of Env and Gag on the effector cell. Recruitment of these membrane molecules into polarized clusters was dependent on Env engagement of CD4 and CXCR4 and required remodelling of the actin cytoskeleton. Transfer of Gag from effector to target cell was observed by 1 h after conjugate formation, was independent of cell–cell fusion, and was probably mediated by directed virion fusion with the target cell. We propose that receptor engagement by Env directs the rapid, actin-dependent recruitment of HIV receptors and adhesion molecules to the interface, resulting in a stable adhesive junction across which HIV infects the target cell.


PLOS ONE | 2010

Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals.

Davide Corti; Johannes P. M. Langedijk; Andreas Hinz; Michael S. Seaman; Fabrizia Vanzetta; Blanca Fernandez-Rodriguez; Chiara Silacci; Debora Pinna; David Jarrossay; Sunita S. Balla-Jhagjhoorsingh; Betty Willems; Maria J. Zekveld; Hanna Dreja; Eithne O'Sullivan; Corinna Pade; Chloe Orkin; Simon A. Jeffs; David C. Montefiori; David Davis; Winfried Weissenhorn; Áine McKnight; Jonathan L. Heeney; Federica Sallusto; Quentin J. Sattentau; Robin A. Weiss; Antonio Lanzavecchia

Background The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine. Methods and Findings We immortalized IgG+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity. Conclusions This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.


Nature Reviews Microbiology | 2008

Avoiding the void: cell-to-cell spread of human viruses

Quentin J. Sattentau

The initial stages of animal virus infection are generally described as the binding of free virions to permissive target cells followed by entry and replication. Although this route of infection is undoubtedly important, many viruses that are pathogenic for humans, including HIV-1, herpes simplex virus and measles, can also move between cells without diffusing through the extracellular environment. Cell-to-cell spread not only facilitates rapid viral dissemination, but may also promote immune evasion and influence disease. This Review discusses the various mechanisms by which viruses move directly between cells and the implications of this for viral dissemination and pathogenesis.


Cell | 1989

Identification of the residues in human CD4 critical for the binding of HIV.

James Arthos; Keith Charles Deen; Margery A. Chaikin; James Allan Fornwald; Ganesh Sathe; Quentin J. Sattentau; Paul R. Clapham; Robin A. Weiss; J. Steven McDougal; Concetta Pietropaolo; Richard Axel; Alemseged Truneh; Paul J. Maddon; Raymond Sweet

The CD4 molecule is a T cell surface glycoprotein that interacts with high affinity with the envelope glycoprotein of the human immunodeficiency virus, HIV, thus serving as a cellular receptor for this virus. To define the sites on CD4 essential for binding to gp120, we produced several truncated, soluble derivatives of CD4 and a series of 26 substitution mutants. Quantitative binding analyses with the truncated proteins demonstrate that the determinants for high affinity binding lie solely with the first 106 amino acids of CD4 (the V1 domain), a region having significant sequence homology to immunoglobulin variable regions. Analysis of the substitution mutants further defines a discrete binding site within this domain that overlaps a region structurally homologous to the second complementarity-determining region of antibody variable domains. Finally, we demonstrate that the inhibition of virus infection and virus-mediated cell fusion by soluble CD4 proteins depends on their association with gp120 at this binding site.


Journal of Virology | 2000

Selective Interactions of Polyanions with Basic Surfaces on Human Immunodeficiency Virus Type 1 gp120

Maxime Moulard; Hugues Lortat-Jacob; Isabelle Mondor; Guillaume Roca; Richard T. Wyatt; Joseph Sodroski; Lu Zhao; William C. Olson; Peter D. Kwong; Quentin J. Sattentau

ABSTRACT It is well established that the gp120 V3 loop of T-cell-line-adapted human immunodeficiency virus type 1 (HIV-1) binds both cell-associated and soluble polyanions. Virus infectivity is increased by interactions between HIV-1 and heparan sulfate proteoglycans on some cell types, and soluble polyanions such as heparin and dextran sulfate neutralize HIV-1 in vitro. However, the analysis of gp120-polyanion interactions has been limited to T-cell-line-adapted, CXCR4-using virus and virus-derived gp120, and the polyanion binding ability of gp120 regions other than the V3 loop has not been addressed. Here we demonstrate by monoclonal-antibody inhibition, labeled heparin binding, and surface plasmon resonance studies that a second site, most probably corresponding to the newly defined, highly conserved coreceptor binding region on gp120, forms part of the polyanion binding surface. Consistent with the binding of polyanions to the coreceptor binding surface, dextran sulfate interfered with the gp120-CXCR4 association while having no detectable effect on the gp120-CD4 interaction. The interaction between polyanions and X4 or R5X4 gp120 was readily detectable, whereas weak or undetectable binding was observed with R5 gp120. Analysis of mutated forms of X4 gp120 demonstrated that the V3 loop is the major determinant for polyanion binding whereas other regions, including the V1/V2 loop structure and the NH2 and COOH termini, exert a more subtle influence. A molecular model of the electrostatic potential of the conserved coreceptor binding region confirmed that it is basic but that the overall charge on this surface is dominated by the V3 loop. These results demonstrate a selective interaction of gp120 with polyanions and suggest that the conserved coreceptor binding surface may present a novel and conserved target for therapeutic intervention.


Journal of Virology | 2000

Oligomeric Modeling and Electrostatic Analysis of the gp120 Envelope Glycoprotein of Human Immunodeficiency Virus

Peter D. Kwong; Richard T. Wyatt; Quentin J. Sattentau; Joseph Sodroski; Wayne A. Hendrickson

ABSTRACT The human immunodeficiency virus envelope glycoproteins, gp120 and gp41, function in cell entry by binding to CD4 and a chemokine receptor on the cell surface and orchestrating the direct fusion of the viral and target cell membranes. On the virion surface, three gp120 molecules associate noncovalently with the ectodomain of the gp41 trimer to form the envelope oligomer. Although an atomic-level structure of a monomeric gp120 core has been determined, the structure of the oligomer is unknown. Here, the orientation of gp120 in the oligomer is modeled by using quantifiable criteria of carbohydrate exposure, occlusion of conserved residues, and steric considerations with regard to the binding of the neutralizing antibody 17b. Applying similar modeling techniques to influenza virus hemagglutinin suggests a rotational accuracy for the oriented gp120 of better than 10°. The model shows that CD4 binds obliquely, such that multiple CD4 molecules bound to the same oligomer have their membrane-spanning portions separated by at least 190 Å. The chemokine receptor, in contrast, binds to a sterically restricted surface close to the trimer axis. Electrostatic analyses reveal a basic region which faces away from the virus, toward the target cell membrane, and is conserved on core gp120. The electrostatic potentials of this region are strongly influenced by the overall charge, but not the precise structure, of the third variable (V3) loop. This dependence on charge and not structure may make electrostatic interactions between this basic region and the cell difficult to target therapeutically and may also provide a means of viral escape from immune system surveillance.


Trends in Microbiology | 1999

HIV-1 attachment: another look

Sophie Ugolini; Isabelle Mondor; Quentin J. Sattentau

HIV-1 attachment to host cells is generally considered to take place via high-affinity binding between CD4 and gp120. However, the binding of virion-associated gp120 to cellular CD4 is often weak, and most cell types that are permissive for HIV-1 infection express little CD4. Thus, other interactions between the virion and the cell surface could dominate the attachment process.


Journal of General Virology | 2002

Occupancy and mechanism in antibody-mediated neutralization of animal viruses

Per Johan Klasse; Quentin J. Sattentau

Neutralization of virus infectivity by antibodies is an important component of immunity to several virus infections. Here, the immunochemical basis for the action of neutralizing antibodies, and what role their induction of conformational changes in the antigen might play, is reviewed. Theories of the mechanisms by which antibodies neutralize virus infectivity in vitro are also presented. The theoretical and empirical foundation of the hypothesis that viruses are neutralized by a single antibody per virion is critically reviewed. The relationship between antibody occupancy on virions and the mechanism of neutralization is explored. Examples of neutralization mediated through antibody interference with virus attachment and entry are discussed and test implications of refined theories of neutralization by antibody coating of virions are formulated.

Collaboration


Dive into the Quentin J. Sattentau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin A. Weiss

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clare Jolly

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter C. L. Beverley

Edward Jenner Institute for Vaccine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis R. Burton

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge